模拟操作系统实现源码的简单介绍
本文目录一览:
- 1、如何制作全新的桌面级操作系统?(要使用全新的源代码,脱离微软和linux)
- 2、操作系统源代码指什么?是不是有了这个以后就可以复制这个操作系统?(完全不懂,求教)
- 3、跪求操作系统之文件系统实验源代码
- 4、C语言模拟操作系统进程调度和管理
如何制作全新的桌面级操作系统?(要使用全新的源代码,脱离微软和linux)
如何编辑,呵呵,最简单的有个文本编辑器就能编辑,高效一点的用Source Insight这样的程序编辑器来编辑
---------------------------------------------------
回答告诉你,没有,当然不可能是windows,
你可以用源码完全构建出一个linux ,除此之外,再无其他,开放源码而能由自己自由手动编译制作的也仅仅有linux
不要说什么skyos , 第一,他基本上是基于linux的, 第二 它不是开放源代码的
Macos 也不是开放源代码的
操作系统源代码指什么?是不是有了这个以后就可以复制这个操作系统?(完全不懂,求教)
主要指系统内核的源代码。可以把系统内核程序编译出来
开机的时候使用 bootloader 来加载内核程序,这样系统就跑起来了
跪求操作系统之文件系统实验源代码
首先研究 Linux 源代码树的顶层目录,它通常(但不总是)位于 /usr/src/linux-。我们不会研究得过于详细,因为 Linux 源代码经常会发生变化,但是,我们将尝试让给出的信息足以找出特定驱动程序或函数的位置。
Makefile:这个文件是整个源代码树的顶层 makefile。它定义了很多实用的变量和规则,比如默认的 gcc 编译标记。
Documentation/:这个目录中包含很多关于配置内核、运行 ramdisk 等任务的实用信息(但通常是过时的)。不过,与不同配置选项相应的帮助条目并不在这里 —— 它们在每个源代码目录的 Kconfig 文件中。
arch/:所有与体系结构相关的代码都在这个目录以及 include/asm- 目录中。在此目录中,每种体系结构都有自己的目录。例如,用于基于 PowerPC 的计算机的代码位于 arch/ppc 目录中。在这些目录里,可以找到底层内存管理、中断处理、早期初始化、汇编例程,等等。
crypto/:这是内核本身所用的加密 API。
drivers/:按照惯例,在此目录的子目录中可以找到运行外围设备的代码。包括视频驱动程序、网卡驱动程序、底层 SCSI 驱动程序,以及其他类似的驱动程序。例如,在 drivers/net 中可以找到大部分网卡驱动程序。将一类驱动程序组合在一起的某些更高层代码,可能会(也可能不会)像底层驱动程序本身那些包含在同一目录中。
fs/:通用文件系统的代码(称做 VFS,即 Virtual File System)和各个不同文件系统的代码都可以在这个目录中找到。ext2 文件系统是在 Linux 中最常广泛使用的文件系统之一;在 fs/ext2 中可以找到读取 ext2 格式的代码。并不是所有文件系统都会编译或运行;对某些寻找内核项目的人而言,更生僻的文件系统永远都是理想的候选者。
include/:在 .c 文件的开头所包含的大部分头文件都可以在这个目录中找到。 asm- 目录下是与体系结构相关的包含(include )文件。部分内核构建过程创建从 asm 指定 asm- 的符号链接。这样,无需将其固定编码到 .c 文件 #include 就可以获得用于那个体系结构的正确文件。其他目录中包含的是 非-体系结构-相关 的头文件。如果在不只一个 .c 文件中使用了某个结构体、常量或者变量,那么它可能应该放入其中一个头文件中。
init/:这个目录中的文件包括 main.c、创建 早期用户空间(early userspace) 的代码,以及其他初始化代码。可以认为 main.c 是内核“粘合剂(glue)”。在下一部分将深入讨论 main.c。早期用户空间提供了 Linux 内核引导起来时所需要的功能,而这些功能并不需要在内核本身运行。
ipc/:IPC 的意思是 进程间通信(interprocess communication)。它包含了共享内存、信号量以及其他形式 IPC 的代码。
kernel/:不适合放在任何其他位置的通用内核级代码位于此处。这里有高层系统调用代码,以及 printk() 代码、调度程序、信号处理代码,等等。文件名包含很多信息,所以可以使用 ls kernel/,并非能常准确地猜到每个文件的功能。
lib/:这里是对所有内核代码都通用的实用例程。常见的字符串操作、调试例程,以及命令行解析代码都位于此处。
mm/:这个目录中是高层次内核管理代码。联合使用这些例程以及底层的与体系结构相关的例程(通常位于 arch//mm/ 目录中)来实现虚拟内存(Virtual memory,VM)。在这里会完成早期内存管理(在内存子系统完全建立起来之前需要它),以及文件的内存映射、页高速缓存管理、内存分配、RAM 中页的清除(还有很多其他事情)。
net/:这里是高层网络代码。底层网络驱动程序与此层次代码交换数据包,这个层次的代码可以根据数据包将数据传递给用户层应用程序,或者丢弃数据,或者在内核中使用它。net/core 包含大部分不同的网络协议都可以使用的代码,和某些位于 net/ 目录本身中的文件一样。特定的网络协议在 net/ 的子目录下实现。例如,在 net/ipv4 目录中可以找到 IP(版本 4)代码。
scripts/:这个目录中包含的脚本可用于内核的构建,但并不将任何代码加入到内核本身之中。例如,各种配置工具可以将它们的文件放在这里。
security/:在这里可以找到不同 Linux 安全模型的代码,比如 NSA Security-Enhanced Linux 以及套接字和网络安全钩子函数(hooks),以及其他安全选项。
sound/:这里放置的是声卡驱动程序和其他与声音相关的代码。
usr/:此目录中的代码用于构建包含 root 文件系统映像的 cpio-格式 的归档文件,用于早期用户空间。
C语言模拟操作系统进程调度和管理
给,已经编译运行通过了,简单写的:
#includestdio.h
#includetime.h
#includestdlib.h
/*********************以下是全局数据结构和变量***********************/
/*PCB 结构*/
struct PCB{
int pname;
int pri;
int runtime;
int waittime;
struct PCB *next;
}pcb[7];
/* 运行指针*/
struct PCB *running;
/*高优先级就绪队列头指针*/
struct PCB *Hready;
/*低优先级队列头指针*/
struct PCB *Lready;
/*等待队列头指针*/
struct PCB *wait;
int sig=0;
/**************************以下是函数说明****************************/
/*利用循环实现延迟*/
void delay();
/*模拟进程3-9*/
void proc(struct PCB *running);
/*将node插入到head所指示的队列的尾部*/
void InsertIntoQueueTail(struct PCB ** head,struct PCB *node);
/*进程调度函数*/
int proc_switch();
/*进程等待函数*/
void proc_wait();
/*进程唤醒函数*/
int proc_wakeup();
/************************以下是函数定义及注释************************/
/*主函数*/
main()
{
int i;
/*初始化,创建进程3-9,置低优先级,等待时间为0,
依次插入低优先级队列*/
for(i = 0;i 7;i++){
pcb[i].pname = i+3;
pcb[i].pri = 0;
pcb[i].waittime = 0;
InsertIntoQueueTail(Lready,pcb[i]);
}
/*等待队列和高优先级队列为空*/
wait = NULL;
Hready=NULL;
printf("\nThe process_switch begin:\n");
/*模拟进程调度开始*/
for(;;)
{
switch(sig){
case 0:/*无进程等待调度,打印信息并返回*/
if(!proc_switch())
{
printf("No Process to run,press any key to return:\n");
getchar();
}
break;
case 1:proc_wait();
break;
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:proc(running);
break;
default:printf("\nerror!");
exit(-1);
}
}
}
/*功能:延迟一个时间片*/
/*入口参数:无*/
/*出口参数:无*/
void delay()
{
int i,j;
for(i=0;i20000;i++)
for(j=0;j10000;j++)
{
}
}
/*功能:进程3-9*/
/*入口参数:运行指针*/
/*出口参数:无*/
void proc(struct PCB * running)
{
int i;
srand( (unsigned)time( NULL ) );
/*显示当前运行的进程的id*/
printf("\nNow Process %d is running\n",running-pname);
/*当前进程执行running-runtime个时间片*/
for(i=running-runtime;i0;i--){
/*显示剩余的时间片*/
printf("%d time slice(s) left\n",i);
/*延迟*/
delay();
proc_wakeup();
/*产生一个1到1000的随机数,若该随机数小余100,当前进程等待,*/
if((rand()%1000+1)100){
printf("Process %d begins to wait.\n",running-pname);
sig=1;
return;
}
}
/*显示时间片耗尽,进程转为低优先级就绪状态*/
printf("Time slices for process %d exhausted.\n",running-pname);
InsertIntoQueueTail(Hready,running);
sig=0;
return;
}
/*功能:将一个节点插入队列尾部*/
/*入口参数:队列头指针地址head,待插入结点node*/
/*出口参数:无*/
void InsertIntoQueueTail(struct PCB **head,struct PCB *node)
{
struct PCB *p;
node-next=NULL;
/*被插入队列为空*/
if(*head==NULL){
*head=node;
return;
}
/*被插入队列不为空*/
else{
p=*head;
/*找到队列的最后一个结点*/
while(p-next!=NULL) p=p-next;
p-next=node;
}
}
/*功能:进程调度*/
/*入口参数:无*/
/*出口参数:若调度成功,返回1,否则返回0*/
int proc_switch()
{
/*若高优先级就绪队列和低优先级就绪队列均为空,则循环执行进程唤醒*/
while(Hready == NULL Lready == NULL)
if(!proc_wakeup()) return 0;
/*若高优先级就绪队列非空,则执行其第一个进程,分配2个时间片*/
if(Hready != NULL){
running = Hready;
Hready = Hready - next;
running-runtime = 2;
}
/*若高优先级就绪队列为空,则执行低优先级就绪队列的第一个进程,
分配5个时间片*/
else{
running = Lready;
Lready=Lready - next;
running - runtime = 5;
}
/*别调度进程的id赋给sig*/
sig = running - pname;
return 1;
}
/*功能:进程等待。将当前运行进程置高优先级,等待时间为20,
插入等待队列尾部*/
/*入口参数:无*/
/*出口参数:无*/
void proc_wait()
{
struct PCB *p;
running-pri=1;
running-waittime=20;
InsertIntoQueueTail(wait,running);
sig=0;
return;
}
/*功能:进程唤醒*/
/*入口参数:无*/
/*出口参数:若等待队列为空,则返回0,否则返回1*/
int proc_wakeup()
{
struct PCB *p,*last,*MoveToReady;
p = wait;
/*等待队列为空,返回0*/
if(p == NULL) return 0;
/*延迟*/
delay();
/*等待队列中每个进程的等待时间减1*/
while(p != NULL){
p - waittime -= 1;
p=p-next;
}
p=wait;
/*从等待队列中摘除等待时间为0的进程,插入到高优先级就绪队列的尾部*/
while(p!=NULL){
if(p - waittime == 0){
MoveToReady = p;
if (p == wait)
wait = p-next;
else
last - next = p-next;
p = p - next;
InsertIntoQueueTail(Hready,MoveToReady);
}
else{
p = p - next;
}
}
sig =0;
return 1;
}