人工智能应用系统和发展(人工智能应用技术及系统构成)
本文目录一览:
人工智能的发展前景趋势?
1、 机器视觉和语音识别是主要市场
技术层是基于基础理论和数据之上人工智能应用系统和发展,面向细分应用开发的技术。中游技术类企业具有技术生态圈、资金和人才三重壁垒人工智能应用系统和发展,是人工智能产业的核心。相比较绝大多数上游和下游企业聚焦某一细分领域、技术层向产业链上下游扩展较为容易。
该层面包括算法理论(机器学习)、平台框架和应用技术(计算机视觉、语音识别、自然语言处理)。众多国际科技巨头和独角兽均在该层级开展广泛布局。近年来人工智能应用系统和发展,我国技术层围统垂直领城重点研发,在计算机视觉、语音识别等领城技术成熟,国内头部企业脱颗而出,竞争优势明显。
2、计算机视觉发展历经三大理念,规模突破400亿元
1982年马尔(David Marr)《视觉》(Marr,1982)一书的问世,标志着计算机视觉成为了一门独立学科。计算机视觉的研究内容,大体可以分为物体视觉(object vision)和空间视觉(spatial vision)二大部分。物体视觉在于对物体进行精细分类和鉴别,而空间视觉在于确定物体的位置和形状,为“动作(action)”服务。正像著名的认知心理学家JJ.Gibson所言,视觉的主要功能在于“适应外界环境,控制自身运动”。适应外界环境和控制自身运动,是生物生存的需求,这些功能的实现需要靠物体视觉和空间视觉协调完成。
计算机视觉近40年的发展中,尽管人们提出了大量的理论和方法,但总体上说,计算机视觉经历了三个主要历程。即人工智能应用系统和发展:马尔计算视觉、多视几何与分层三维重建和基于学习的视觉。
国际市场研究机构Research And Markets发布的最新报告显示,2019年全球计算机视觉市场规模为46.433亿美元,预计到2027年将达到950.805亿美元,从2020年到2027年,预计年复合增长率为46.9%。
3、语音识别发展科追溯到1956年
语音识别的研究工作可以追溯到20世纪50年代。在1952年,ATT贝尔研究所的Davis,Biddulph和Balashek研究成功了世界上第一个语音识别系统Audry系统,可以识别10个英文数字发音。这个系统识别的是一个人说出的孤立数字,并且很大程度上依赖于每个数字中的元音的共振峰的测量。1956年,在RCA实验室,Olson和Belar研制了可以识别一个说话人的10个单音节的系统,它同样依赖于元音带的谱的测量。到21世纪之后,深度学习技术极大的促进了语音识别技术的进步,识别精度大大提高,应用得到广泛发展。
目前,语音识别技术已逐渐被应用于工业、通信、商务、家电、医疗、汽车电子以及家庭服务等各个领域。例如,现今流行的手机语音助手,就是将语音识别技术应用到智能手机中,能够实现人与手机的智能对话功能。其中包括美国苹果公司的Siri语音助手,智能360语音助手,百度语音助手等。
随着语音技术和自然语言理解技术的快速进步,AI语音语义技术已在智能翻译、智能医疗、智能汽车、智能客服、互联网语音审核等多个领域实现场景应用。
疫情之后不仅是工业领域,政务服务领域的语音机器人、传统行业企业的语音机器人也将有较高的市场增长空间。另外,NLP、AI数字员工、RPA的发展,一定程度上也将重塑AI应用场景。
2018年,全球智能语音市场仍呈现快速增长趋势,市场规模为142.1亿美元,根据预测到2024年全球智能语音市场规模将达到215亿美元,其中智慧医疗健康、智慧金融以及各类智能终端智能语音技术需求将成为主要的驱动因素。
4、美国AI高层次学者数量大幅领先
AI高层次学者是指入选AI 2000榜单的2000位人才,由于存在同一学者入选不同领域的现象,经过去重处理后,AI高层次学者共计1833位。从国家角度看AI高层次学者分布,美国A1高层次学者的数量最多,有1244人次,占比62.2%,超过总人数的一半以上,且是第二位国家数量的6倍以上。中国排在美国之后,位列第二,有196人次,占比9.8%。德国位列第三,是欧洲学者数量最多的国家;其余国家的学者数量均在100人次以下。
—— 以上数据参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》
我国人工智能的发展现状
经过多年的持续积累,我国在人工智能领域取得重要进展,国际科技论文发表量和发明专利授权量已居世界第二,部分领域核心关键技术实现重要突破。
语音识别、视觉识别技术世界领先,自适应自主学习、直觉感知、综合推理、混合智能和群体智能等初步具备跨越发展的能力,中文信息处理、智能监控、生物特征识别、工业机器人、服务机器人、无人驾驶逐步进入实际应用,人工智能创新创业日益活跃,一批龙头骨干企业加速成长,在国际上获得广泛关注和认可。
加速积累的技术能力与海量的数据资源、巨大的应用需求、开放的市场环境有机结合,形成了我国人工智能发展的独特优势。
与此同时,我国人工智能整体发展水平与发达国家相比仍存在差距,缺少重大原创成果,在基础理论、核心算法以及关键设备、高端芯片、重大产品与系统、基础材料、元器件、软件与接口等方面差距较大。
科研机构和企业尚未形成具有国际影响力的生态圈和产业链,缺乏系统的超前研发布局;人工智能尖端人才远远不能满足需求;适应人工智能发展的基础设施、政策法规、标准体系亟待完善。
人工智能领域技术能力全面提升为人机协同奠定基础
随着大数据、云计算、互联网、物联网等信息技术的发展,以深度神经网络为代表的人工智能技术飞速发展,人工智能领域科学与应用的鸿沟正在被突破。
图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术能力快速提升,技术的产业化进程得以开启,人工智能迎来爆发式增长的新高潮。机器在人工智能技术的应用下,在“视觉”“听觉”“触觉”等人体感官的感知能力不断增强。
例如计算机视觉领域中深受关注的Image Net图像识别挑战赛获奖结果表明,2015年,计算机对于图像的识别能力已经超过人类水平,这意味着计算机能够在多种场景下一定程度上替代人类视觉的工作,更高效地完成任务。
同时得益于深度学习算法能力的提升,语音识别、自然语言处理等人工智能算法的不断革新助推计算机视觉产业持续向前。
人工智能技术能力的不断成熟使得机器能够实现越来越人性化的操作。人工智能技术能力的全面提升为人机系统的能力实现奠定了坚实的基础。
人工智能的认识以及人工智能的发展
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
优点:
1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
3、人工智能可以提高人类认识世界、适应世界的能力。
缺点:
1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。
3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。
人工智能以后的发展前景怎样?
人工智能技术无论是在核心技术,还是典型应用上都已出现爆发式的进展。随着平台、算法、交互方式的不断更新和突破,人工智能技术的发展将主要以“AI+X”(为某一具体产业或行业)的形态得以呈现。所有这些智能系统的出现,并不意味着对应行业或职业的消亡,而仅仅意味着职业模式的部分改变。任何有助于让机器(尤其是计算机)模拟、延伸和扩展人类智能的理论、方法和技术,都可视为人工智能的范畴,展现出无比光明的发展前景。
在我们生活方面,协助人类完成此前被认为必须由人完成的智能任务。人们将不仅生活在真实的物理空间,同样生活在网络空间。网络空间中的每个个体既有可能是人,也有可能是一个人工智能。
在生产方面,未来人工智能有望在传统农业转型中发挥重要作用。例如,通过遥感卫星、无人机等监测我国耕地的宏观和微观情况,由人工智能自动决定(或向管理员推荐)最合适的种植方案,并综合调度各类农用机械、设备完成方案的执行,从而最大限度解放农业生产力。
在制造业中,人工智能将可以协助设计人员完成产品的设计,在理想情况下,可以很大程度上弥补中高端设计人员短缺的现状,从而大大提高制造业的产品设计能力。同时,通过挖掘、学习大量的生产和供应链数据,人工智能还可望推动资源的优化配置,提升企业效率。在理想情况下,企业里人工智能将从产品设计、原材料购买方案、原材料分配、生产制造、用户反馈数据采集与分析等方面为企业提供全流程支持,推动我国制造业转型和升级。
在生活服务方面,人工智能同样有望在教育、医疗、金融、出行、物流等领域发挥巨大作用。例如,医疗方面,可协助医务人员完成患者病情的初步筛查与分诊;医疗数据智能分析或智能的医疗影像处理技术可帮助医生制定治疗方案,并通过可穿戴式设备等传感器实时了解患者各项身体指征,观察治疗效果。在教育方面,一个教育类人工智能系统可以承担知识性教育的任务,从而使教师能将精力更多地集中于对学生系统思维能力、创新实践能力的培养。
对金融而言,人工智能将能协助银行建立更全面的征信和审核制度,从全局角度监测金融系统状态,抑制各类金融欺诈行为,同时为贷款等金融业务提供科学依据,为维护机构与个人的金融安全提供保障。在出行方面,无人驾驶(或自动驾驶)已经取得了相当进展。在物流方面,物流机器人已可以很大程度替代手工分拣,而仓储选址和管理、配送路线规划、用户需求分析等也将(或已经)走向智能化。
平台、算法以及接口等核心技术的突破,将进一步推动人工智能实现跨越式发展。从核心技术的角度来看,三个层次的突破将有望进一步推动人工智能的发展,分别为平台(承载人工智能的物理设备、系统)、算法(人工智能的行为模式)以及接口(人工智能与外界的交互方式)。
在平台层面实现一个能服务于不同企业、不同需求的智能平台,将是未来技术发展的一大趋势。算法决定了人工智能的行为模式,一个人工智能系统即使有当前最先进的计算平台作为支撑,若没有配备有效的算法,只会像一个四肢发达而头脑简单的人,并不能算真正具有智能。面向典型智能任务的算法设计,从人工智能这一概念诞生时起就是该领域的核心内容之一。
令算法通过自身的演化,自动适应这个“唯一不变的就是变化”的物理世界?这也许是“人工”智能迈向“类人”智能的关键。接口(人工智能与外界的交互方式)、沟通是人类的一种基本行为,人工智能与人类的分界正变得模糊,一个中文聊天机器人也许比一位外国友人让我们觉得更容易沟通。
因此,如何实现人机的高效沟通与协同将具有重要意义。语音识别、自然语言理解是实现人机交互的关键技术之一。另外,不采用自然语言,而是直接通过脑电波与机器实现沟通,即脑机接口技术,也已有相当进展,目前已经大体可以实现用脑电波直接控制外部设备(如计算机、机器手等)进行简单的任务。
浅谈人工智能技术的发展
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”,也可能超过人的智能。
人工智能的定义可以分为两部分,即“ 人工”和“ 智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。