体育资讯网

您现在的位置是:首页 > 分类10 > 正文

分类10

煤炭矿石装修工艺的特点有哪些(煤矿生产工艺都有哪些)

hacker2022-06-13 07:12:25分类1043
本文目录一览:1、装饰装修工程有哪些主要特点2、

本文目录一览:

装饰装修工程有哪些主要特点

天津装饰公司()作为一家专业化、规范化煤炭矿石装修工艺的特点有哪些的装饰装修工程公司认为装饰装修工程煤炭矿石装修工艺的特点有哪些的特点主要有以下几点煤炭矿石装修工艺的特点有哪些

1、资料质量煤炭矿石装修工艺的特点有哪些的操控.

2、施工质量煤炭矿石装修工艺的特点有哪些的操控.

3、施工中荫蔽工程的检验.

4、施工中安全施工的催促,革除业主因为施工人员的工伤而发生不必要的费用等.

5、添加工程量的监理签证,革除业主付冤枉钱.

6、装饰合同的办理.

煤炭的种类和特性

煤炭的种类:

1、焦煤

焦煤是炼焦用煤中之主焦煤,变质程度中等,结焦性和粘结性最佳。利用焦煤,可得到焦炭、焦油、焦炉气。焦炭除供给冶炼外,还可造气和电石。

2、肥煤

肥煤是炼焦用煤的一种,用肥煤炼出的焦炭横裂多,焦根部蜂焦多,易碎,但肥煤的粘结力很强,能与粘结力较弱的煤搭配后炼出优质煤称肥煤为配焦煤之母。

3、无烟煤

无烟煤是高变质煤,具有坚硬、光泽强等特点。燃烧时间长,火力旺。无烟煤主要用于化肥、化工生产。阳泉无烟煤因具有可磨好的特点,是理想的高炉喷吹用燃料。

煤的特性:

1、煤主要有碳、氢、氧、氮和硫等,此外,还有极少量的磷、氟、氯和砷等元素 。

2、煤炭燃烧时,氮不产生热量,在高温下转变成氮氧化合物和氨,以游离状态析出。硫、磷、氟、氯和砷等是煤炭中的有害成分,其中以硫最为重要。

3、煤炭燃烧时绝大部分的硫被氧化成二氧化硫(SO2),随烟气排放,污染大气,危害动、植物生长及人类健康,腐蚀金属设备。

扩展资料:

煤炭的优缺点:

1、优点:煤炭资源量丰富,且因世界各地都有煤炭矿藏,因此开采及供给皆很稳定,价钱也较石油及天然气便宜。

2、缺点:煤炭的发热量比石油或天然气小,煤炭在燃烧时,所排放出的二氧化碳量高于石油及天然气。产量有限,是不可再生能源。

参考资料来源:百度百科—煤

矿物材料的特点,分类及应用有哪些

矿物材料是指将天然矿物(主要是非金属矿物)或岩石作为主要原料经加工、改造所获得的材料产品或是能直接作为材料应用,并以利用其本身的主要物理、化学性质为目的的矿物或岩石。这个含义主要包含了以下四个方面内容:第一,能被直接利用或经过简单的加工处理,即可被利用的天然矿物、岩石;第二,以天然的非金属矿物、岩石为主要原料,通过物理化学反应制成的成品或半成品材料;第三,人工合成的矿物或岩石;第四,这些材料的直接利用目标主要是其自身具有的物理或化学性质,而不局限于其中的个别化学元素。

人们将材料分为金属材料、有机材料、无机非金属材料及复合材料。而将矿物分为金属矿物、非金属矿物和燃料矿物三类。

金属矿物是指通过冶炼提取其中的金属元素为最终利用目的的矿物,如铝矿物是通过冶炼后提取利用其中的铝元素。

非金属矿物大部分是指直接利用其天然矿物原料所固有的物理化学特性的一些矿物,如高岭土、石英等,这些都是直接用作材料应用的矿物。

燃料矿物是指通过热化学反应,提取利用其中的热能的矿物,如煤主要是通过燃烧后获取其中的热能。

很明显,在传统意义上,金属矿物和燃料矿物的利用手段是以改变矿物原有的化学结构来达到利用的目的,也就是通过改变矿物本身的微观结构,来实现矿物的价值;而非金属矿物则是利用了其宏观结构的技术物理特性,大多不改变矿物的微观结构。那么,根据矿物材料的定义可知,矿物材料与目前应用的非金属矿物非常相近,但是它又包含了金属矿物和燃料矿物,也就是说,只要是不破坏目前应用的金属矿物或燃料矿物原有的微观结构,且保留其宏观的技术物理特性而加以利用,则这种金属矿物或燃料矿物也属于矿物材料,比如赤铁矿可直接用作铁红,此时的赤铁矿就是矿物材料。所以,矿物材料的范畴比目前的非金属矿物的范畴要大,不能等同看待。那么广义地说,矿物材料包含了自然界中的各种矿物,包括金属矿物、非金属矿物和燃料矿物。

矿物材料具有以下特点:

1、多用性

矿物材料的多用性是指一种矿物材料能具有多种用途。比如以蒙脱石为主要成分的膨润土可用于石油钻井泥浆、铁矿球团黏结剂、食用油的脱色剂、酒和饮料的澄清、石油的净化、污水处理、农药载体、防水密封、化妆品原料等各个行业。

2、多样性

矿物材料的多样性是指矿物的种类繁多以及矿物性质的复杂性。目前,已知的天然矿物有3000多种,它们的成分结构都非常复杂,而且每种矿物都具有各自独特的物理化学性质和工艺性质。但纵使矿物材料的种类繁多,但是在20世纪初,人类开发应用的矿物材料不足60种,虽然现在已开发应用的矿物材料已经达到200多种,但是所占矿物材料种类总数的比例仍然非常小,这也就是说,矿物材料仍有着巨大的研究开发应用潜力。

3、储量大,价格低廉

与人工合成材料相比较,矿物材料一般都具有储藏量巨大,生产成本低的特点。

4、替代性强

矿物材料的替代性强是指那些具有相似性质的矿物在应用中可以相互替代。

5、应用领域广

目前,矿物材料的应用几乎已经涉及所有的工业领域,包括建材、化工、机械、冶金、轻纺、电子、农业、食品、医药、环保、宝石、工艺美术等各个领域和部门。并且,矿物材料尤其在那些需要抗高强、高速、耐高温、轻质、绝缘、耐腐蚀等特殊要求的地方更能大显身手的地方。

6、经济效益显著

由于矿物材料具有用途多、储量大、价格低的特点,所以矿物材料的研究开发,可获得巨大的经济效益,且随着矿物材料的开发深度和广度不同,所得到的经济效益也会不一样。比如散装的膨润土价格在30美元/t,而有机膨润土的价格则为2400~3600美元/t,这种增值可达80~120倍。

矿物材料的分类

随着矿物材料的研究,目前人们将矿物材料的分类方法定为以下三种:第一,按照矿物材料中主要矿物名称分类;第二,按照矿物材料的结构分类;第三,按照矿物材料的功能分类。其中按照矿物材料中主要矿物名称分类是一种最古老的分类方法,是用矿物材料中最主要的矿物名称来命名。如石棉材料、石墨材料、云母材料等,这是指在这些矿物材料中的主要矿物为石棉、石墨、云母等。但是由于被开发利用的矿物材料越来越多,并且对同一功能所应用的矿物材料常常又可以相互代用,因此这种分类方法已逐渐显现出了它的局限性,这就要求有其他的分类方法来加以丰富和补充。于是就衍生了以下几种分类方法:

1、按照矿物材料的结构分类

这种分类方法是根据矿物材料中的物质组成及其相互关系来进行分类。那么,按矿物材料的结构通常将矿物材料分为单一矿物材料和复合材料两大类。

1)单一矿物材料

单一矿物材料是指那些主要由某一单一矿物所组成的材料,称为单一矿物材料,如柔性石墨纸、石墨填料、碳纤维、石墨纤维、电气云母片、钻石、膨胀珍珠岩、轻质碳酸钙和重质碳酸钙等。

2)复合材料

复合材料是指由矿物材料与其他材料组成的混合体系,称为复合材料。复合材料又分为无机复合材料、无机与有机复合材料和混杂复合材料三类:

(1)无机复合材料是指由两种或两种以上无机矿物材料组成的体系,称为无机复合材料。如石棉水泥制品、微孔硅酸钙和陶瓷材料等。但是需要指出的是,在复合材料中通常只要复合材料的基体是矿物材料,即使在复合材料中使用了部分其他类材料,如有机或金属材料作增强材料时也称为无机复合材料。例如钢纤维水泥和纸纤维石膏板等都属于无机复合材料。

(2)无机与有机复合材料是指将无机矿物材料作为增强材料,与有机高分子聚合物材料复合而成的一种体系。例如火车合成闸瓦、石棉橡胶板和玻璃钢制品等。

(3)混杂复合材料是指由两种或两种以上的普通复合材料构成的体系。通常指由两种不同特性的纤维作为增强材料混杂在基体中的材料。混杂复合材料被认为是复合材料的最新研究成果,也被称为“复合材料的复合材料”。例如飞机用摩阻材料、航空和能源部门使用的高强结构材料等就是混杂复合材料。

2、按照矿物材料成分结构和加工改造特点分类

这种方法将矿物材料分为以下四大类型:

1).天然矿物材料。指直接利用其物理、化学性质的矿物或岩石,经物理加工未改变原料成分和结构。包括填料类(如重钙粉、滑石粉等)、装饰类(如石材、宝石等)、光学类(如水晶、萤石等)、中药类(如芒硝、石膏等)、研磨材料类(如石榴子石、刚玉等)、保健营养类(如电气石、麦饭石等)和隔热材料类(如石棉绳、布等)等。

2) 改性矿物材料。矿物(岩石)进行超细、超纯改型、改性等加工改造后,改变或部分改变了原料的成分或结构,包括表面改性类(如珠光云母、改性碳酸钙等)、成分改性类(如改性膨润土、氟化石墨、熟石膏等)以及结构改性类(如膨胀珍珠岩、膨胀蛭石、膨胀石墨、岩棉等)等。

3) 人工矿物材料。这是模拟天然矿物或岩石生成的原理采用人工合成的矿物材料。包括人工晶体(如人造水晶、人造金刚石、人造宝石、矿物晶须等)、多孔材料(如合成沸石、微孔硅酸钙)、纳米矿物粉体材料(如纳米碳酸钙、纳米氧化锌等)等。

4) 复合矿物材料。复合矿物材料是具有不同相组成的人工合成矿物材料,包括矿物-有机复合类(如石棉、蛭石、硅灰石、云母等与高分子材料合成的摩擦材料、密封材料、绝缘材料等)以及矿物-无机复合类(如矿物纤维增强的无机胶凝材料、矿物为主骨架的建筑材料、绝热保温材料、电功能材料等)。

3、按照矿物材料的功能分类

这种分类方法是根据矿物材料的使用性能和用途的不同来进行分类。根据矿物材料的性能,如利用矿物材料的电、磁、光、热、摩擦、表面化学反应、胶体性质和填充密封性质等不同性质进行划分。通常将矿物材料分为九大类:力学功能材料、热学功能材料、电与磁功能材料、光功能材料、吸附功能材料、黏结与覆盖功能材料、填料与增强功能材料、装饰功能材料和原子能核反应堆功能材料等。根据矿物材料的用途,可将矿物材料分为耐火、保温、绝缘、陶瓷、建材、化工、填料、农用、药用、环保、研磨、功能和宝石等多种应用类型。

韩跃新等在《矿物材料》一书中结合以上分类方法,以中国硅酸盐学会工艺岩石学专业委员会的分类方法为主线,兼顾行业分类和成分分类。

郑水林按照矿物材料的功能与应用进行了如下分类,见表1。

表1 矿物材料的类型及其应用

材料类型 矿物原料 材料品种 应用领域

功能粉体材料 方解石、大理石、白垩、滑石、叶蜡石、伊利石、石墨、高岭土、地开石、云母、硅灰石、硅线石、硅藻土、膨润土、皂石、海泡石、凹凸棒石、金红石、长石、锆英砂、重晶石、石膏、石英、石棉、石榴石、电气石、红柱石、蓝晶石、水镁石、沸石、透闪石、浮石、霞石、蛋白石、金剐石等 细粉(10~1000μm)、超细粉(0.1~10μm)、超微细粉或一维、二维纳米粉(0.001~0.1μm)、表面改性粉体、高纯度粉体、复合粉体、高长径比针状粉体、大径厚比片状粉体、多孔隙粉体等 塑料、橡胶、胶黏剂、化纤、油漆、涂料、陶瓷、玻璃、耐火材料、保温隔热材料、阻燃剂、胶凝材料、造纸、机械、石化、电力、交通、微电子、冶金、建材、饮料、仪器、药品、饲料、航空航天、土壤改良、废水、废气处理等

力学功能材料 石棉、石膏、石墨、花岗岩、大理岩、石英岩、锆英砂、高岭土、长石、金刚石、石榴石、云母、滑石、硅灰石、透闪石、石灰石、硅藻土、燧石、蛋白石等 石棉水泥制品、硅酸钙板、纤维石膏板、石料、石材、结构陶瓷、无机/聚合物复合材料(上下水管、塑钢门窗等)、金刚石(刀具、钻头、砂轮、研磨膏)、磨料、衬里材料、制动器衬片、闸瓦、刹车带(片)、石墨轴承、垫片、密封环、离合器面片、润滑剂(膏)、汽缸垫片、石棉橡胶板、石棉盘根等 建材、建筑、机械、电力、交通、农业、化工、轻工、航空航天、石油、微电子、地质勘探、冶金、煤炭等

热学功能材料 石棉、石墨、石英、长石、金刚石、蛭石、硅藻土、海泡石、凹凸棒石、水镁石、珍珠岩、云母、滑石、高岭土、硅灰石、沸石、金红石、锆英砂、石灰石、自云石、铝土矿等 石棉布、片、板、岩棉、玻璃棉、矿棉吸声板、泡沫石棉、泡沫玻璃、蛭石防火隔热板、硅藻土砖、膨胀蛭石、膨胀珍珠岩、微孔硅钙板、玻璃微珠、保温涂料、耐火材料、镁碳砖、碳/石墨复合材料、储热材料、莫来石、堇青石、氧化锆陶瓷等 建材、建筑、冶金、化工、轻工、机械、电力、交通、航空航天、石油、煤炭等

电磁功能材料 石墨、石英、金刚石、蛭石、云母、滑石、高岭土、金红石、电气石、铁石榴石等 碳-石墨电极、电刷、胶体石墨、氟化石墨制品、电极糊、热敏电阻、电池、非线性电阻、陶瓷半导体、石榴子石型铁氧体、压电材料(压电水晶、自动点火元件等)、云母电容器、云母纸、云母板、电瓷、封装陶瓷等 电力、微电子、通讯、计算机、机械、航空、航天、航海等

光功能材料 水晶、冰洲石、萤石等 偏光、折光、聚光镜片、光学玻璃、光导纤维、滤光片、偏振材料、荧光材料等 通讯、电子、仪器仪表、机械、航空、航天、轻工等

吸波与屏蔽材料 金红石、电气石、石英、高岭土、石墨、重晶石、膨润土、滑石等 二氧化钛(钛白粉)、纳米二氧化硅、氧化铝、核反应堆屏蔽材料、护肤霜、防护服、保暖衣、塑料薄膜、消光剂等 核工业、军工、化妆(护肤)品、民(军)用服装、农业、涂料、皮革等

催化材料 沸石、高岭土、硅藻土、海泡石、凹凸棒石、地开石等 分子筛、催化剂、催化剂载体等 石油、化工、农药、医药等

吸附材料 沸石、高岭土、硅藻土、海泡石、凹凸棒石、地开石、膨润土、皂石、珍珠岩、蛋白土、石墨、滑石等 助滤剂、脱色剂、干燥剂、除臭剂、杀(抗)菌剂、水处理剂、空气净化剂、油污染处理剂、核废料处理剂等 啤酒、饮料、食用油、食品、工业油脂、制药、化妆品、环保、家用电器、化工等

流变材料 膨润土、皂石、海泡石、凹凸棒石、水云母等 有机膨润土、触变剂、防沉剂、增稠剂、凝胶剂、流平剂、钻井泥浆等 各种油漆、涂料、黏合剂、清洗剂、采油、地质勘探等

黏结材料 膨润土、海泡石、凹凸棒石、水云母等 团矿黏结剂、硅酸钠、胶黏剂、铸模、黏土基复合黏结剂等 冶金、建筑、铸造、轻工等

装饰材料 大理石、花岗岩、砚石、云母、叶蜡石、蛋白石、水晶、石榴石、橄榄石、玛瑙、玉石、辉石、孔雀石、冰洲石、琥珀石、绿松石、金刚石、月光石等 装饰石材、珠光云母、彩石、各种宝玉石、观赏石等 建筑、建材、涂料、皮革、化妆品、珠宝业、观光业等

生物功能材料 沸石、麦饭石、高岭土、硅藻土、海泡石、凹凸棒石、膨润土、皂石、珍珠岩、蛋白土、滑石、电气石、碳酸钙等 药品及保健品、药物载体、饲料添加剂、杀(抗)菌剂、吸附剂、化妆品添加剂 制药业、生物化学工业、畜牧业、化妆品等

矿物材料的应用

矿物材料的应用可以说是最古老的。远在石器时代,人类就使用了天然矿物制作工具,但当时只是一种无意识的应用。随着社会的发展,人类逐渐掌握了金属的冶炼技术,金属材料的应用也逐渐得到了发展,并渐渐超过了天然矿物的应用,到了铜器时代和铁器时代,已经是金属材料占绝对优势。但在近代,随着研究手段的发展及人类对天然矿物性质的深入了解,人们发现天然矿物有许多性质是人造物品所无法与之相比的。如耐高温材料,人类至今也未能造出可达到石墨矿的耐高温性能的材料,石墨矿熔点为3 850℃,汽化温度为4 500℃,在7 000℃的超高温条件下加热l0s的质量损失为0.8%,而人造的最耐高温金属材料在此条件下的质量损失为12.9%,并且在2500℃时石墨的强度反而比室温时的强度提高一倍。又比如耐腐蚀抗氧化性能方面,许多天然矿物也大大优于金属材料的耐腐蚀抗氧化性能。正因为如此,对天然矿物的开发和利用又重新受到了人们的重视,并获得了迅速地发展。现在对矿物材料的开发应用程度已是衡量一个国家工业化程度的标志。有人曾说21世纪将是人类的第二个石器时代,这是指在21世纪人类将大量地开发应用矿物材料。还有人说当一个国家的经济中矿物材料的产值首次超过金属矿物的产值时,即是这个国家工业成熟的界线。矿物材料的产值超过金属矿物产值的现象在英国、美国两个国家中出现的时间为:英国在20世纪初,美国在1934年,到了20世纪70年代这两个国家中矿物材料与金属矿物的产值比达到2:1,到l986年达到3:1。世界范围内,自20世纪50年代开始,矿物材料的消耗量每十年增长50%~60%,目前年总产值超过800亿美元,其中各国的出口量约300亿美元,年增长率约3%。

矿物材料的应用领域几乎已涉及所有的工业领域和部门,由于各领域中对所使用的矿物材料的种类和性质的要求各不相同,因此有必要首先了解各领域中所使用的矿物材料的情况。目前,根据矿物材料被应用的领域不同,矿物材料主要可分为矿物保温材料、绝缘矿物材料、陶瓷矿物材料、建筑矿物材料、化工矿物原料、农用矿物材料、填料矿物材料、药用矿物材料、环保用矿物材料、研磨矿物材料、宝玉石矿物材料和功能矿物材料等。

与发达国家相比,我国对矿物材料的研究和开发时间较晚,前年出口额约6亿美元,仅占世界出口额的2%,且大多为未加工的原材料。就我国的矿产资源而言,我国的矿物资源种类繁多,为资源品种大国,且有自身的特点,相当数量的矿产资源储量居于世界前列,如钨、稀土等矿物,因此,在矿物材料的研究和开发方面存在巨大的潜力,尤其是那些针对我国矿产瓷源特点的矿物材料研究开发工作,前景更加广阔。

煤炭气化的优点体现在哪些方面

一、煤气化原理

气化过程是煤炭的一个热化学加工过程。它是以煤或煤焦为原料,以氧气(空气、富氧或工业纯氧)、水蒸气作为气化剂,在高温高压下通过化学反应将煤或煤焦中的可燃部分转化为可燃性气体的工艺过程。气化时所得的可燃气体成为煤气,对于做化工原料用的煤气一般称为合成气(合成气除了以煤炭为原料外,还可以采用天然气、重质石油组分等为原料),进行气化的设备称为煤气发生炉或气化炉。 煤炭气化包含一系列物理、化学变化。一般包括热解和气化和燃烧四个阶段。干燥属于物理变化,随着温度的升高,煤中的水分受热蒸发。其他属于化学变化,燃烧也可以认为是气化的一部分。煤在气化炉中干燥以后,随着温度的进一步升高,煤分子发生热分解反应,生成大量挥发性物质(包括干馏煤气、焦油和热解水等),同时煤粘结成半焦。煤热解后形成的半焦在更高的温度下与通入气化炉的气化剂发生化学反应,生成以一氧化碳、氢气、甲烷及二氧化碳、氮气、硫化氢、水等为主要成分的气态产物,即粗煤气。气化反应包括很多的化学反应,主要是碳、水、氧、氢、一氧化碳、二氧化碳相互间的反应,其中碳与氧的反应又称燃烧反应,提供气化过程的热量。 主要反应有: 1、水蒸气转化反应 C+H2O=CO+H2-131KJ/mol 2、水煤气变换反应 CO+ H2O =CO2+H2+42KJ/mol 3、部分氧化反应 C+0.5 O2=CO+111KJ/mol 4、完全氧化(燃烧)反应 C+O2=CO2+394KJ/mol 5、甲烷化反应 CO+2H2=CH4+74KJ/mol 6、Boudouard反应 C+CO2=2CO-172KJ/mol

二、煤气化工艺

煤炭气化技术虽有很多种不同的分类方法,但一般常用按生产装置化学工程特征分类方法进行分类,或称为按照反应器形式分类。气化工艺在很大程度上影响煤化工产品的成本和效率,采用高效、低耗、无污染的煤气化工艺(技术)是发展煤化工的重要前提,其中反应器便是工艺的核心,可以说气化工艺的发展是随着反应器的发展而发展的,为了提高煤气化的气化率和气化炉气化强度,改善环境,新一代煤气化技术的开发总的方向,气化压力由常压向中高压(8.5 MPa)发展;气化温度向高温(1500~1600℃)发展;气化原料向多样化发展;固态排渣向液态排渣发展。 1、固定床气化 固定床气化也称移动床气化。固定床一般以块煤或焦煤为原料。煤由气化炉顶加入,气化剂由炉底加入。流动气体的上升力不致使固体颗粒的相对位置发生变化,即固体颗粒处于相对固定状态,床层高度亦基本保持不变,因而称为固定床气化。另外,从宏观角度看,由于煤从炉顶加入,含有残炭的炉渣自炉底排出,气化过程中,煤粒在气化炉内逐渐并缓慢往下移动,因而又称为移动床气化。 固定床气化的特性是简单、可靠。同时由于气化剂于煤逆流接触,气化过程进行得比较完全,且使热量得到合理利用,因而具有较高的热效率。 固定床气化炉常见有间歇式气化(UGI)和连续式气化(鲁奇Lurgi)2种。前者用于生产合成气时一定要采用白煤(无烟煤)或焦碳为原料,以降低合成气中CH4含量,国内有数千台这类气化炉,弊端颇多;后者国内有20多台炉子,多用于生产城市煤气;该技术所含煤气初步净化系统极为复杂,不是公认的首选技术。 (1)、固定床间歇式气化炉(UGI) 以块状无烟煤或焦炭为原料,以空气和水蒸气为气化剂,在常压下生产合成原料气或燃料气。该技术是30年代开发成功的,投资少,容易操作,目前已属落后的技术,其气化率低、原料单一、能耗高,间歇制气过程中,大量吹风气排空,每吨合成氨吹风气放空多达5 000 m3,放空气体中含CO、CO2、H2、H2S、SO2、NOx及粉灰;煤气冷却洗涤塔排出的污水含有焦油、酚类及氰化物,造成环境污染。我国中小化肥厂有900余家,多数厂仍采用该技术生产合成原料气。随着能源政策和环境的要来越来越高,不久的将来,会逐步为新的煤气化技术所取代。 (2)、鲁奇气化炉 30年代德国鲁奇(Lurgi)公司开发成功固定床连续块煤气化技术,由于其原料适应性较好,单炉生产能力较大,在国内外得到广泛应用。气化炉压力(2.5~4.0)MPa,气化反应温度(800~900)℃,固态排渣,气化炉已定型(MK~1~MK-5),其中MK-5型炉,内径4.8m,投煤量(75~84)吨/h,粉煤气产量(10~14)万m3/h。煤气中除含CO和H2外,含CH4高达10%~12%,可作为城市煤气、人工天然气、合成气使用。缺点是气化炉结构复杂、炉内设有破粘和煤分布器、炉篦等转动设备,制造和维修费用大;入炉煤必须是块煤;原料来源受一定限制;出炉煤气中含焦油、酚等,污水处理和煤气净化工艺复杂、流程长、设备多、炉渣含碳5%左右。针对上述问题,1984年鲁奇公司和英国煤气公司联合开发了液体排渣气化炉(BGL),特点是气化温度高,灰渣成熔融态排出,炭转化率高,合成气质量较好,煤气化产生废水量小并且处理难度小,单炉生产能力同比提高3~5倍,是一种有发展前途的气化炉。 2、流化床气化 流化床气化又称为沸腾床气化。其以小颗粒煤为气化原料,这些细颗粒在自下而上的气化剂的作用下,保持着连续不断和无秩序的沸腾和悬浮状态运动,迅速地进行着混合和热交换,其结果导致整个床层温度和组成的均一。流化床气化能得以迅速发展的主要原因在于:(1)生产强度较固定床大。(2)直接使用小颗粒碎煤为原料,适应采煤技术发展,避开了块煤供求矛盾。(3)对煤种煤质的适应性强,可利用如褐煤等高灰劣质煤作原料。 流化床气化炉常见有温克勒(Winkler)、灰熔聚(U-Gas)、循环流化床(CFB)、加压流化床(PFB是PFBC的气化部分)等。 (1)、循环流化床气化炉CFB 鲁奇公司开发的循环流化床气化炉(CFB)可气化各种煤,也可以用碎木、树皮、城市可燃垃圾作为气化原料,水蒸气和氧气作气化剂,气化比较完全,气化强度大,是移动床的2倍,碳转化率高(97%),炉底排灰中含碳2%~3%,气化原料循环过程中返回气化炉内的循环物料是新加入原料的40倍,炉内气流速度在(5~7)m/s之间,有很高的传热传质速度。气化压力0.15MPa。气化温度视原料情况进行控制,一般控制循环旋风除尘器的温度在(800~1050)℃之间。鲁奇公司的CFB气化技术,在全世界已有60多个工厂采用,正在设计和建设的还有30多个工厂,在世界市场处于领先地位。 CFB气化炉基本是常压操作,若以煤为原料生产合成气,每公斤煤消耗气化剂水蒸气1.2kg,氧气0.4kg,可生产煤气 (l.9~2.0)m3。煤气成份CO+H2>75%,CH4含量2.5%左右, CO215%,低于德士古炉和鲁奇MK型炉煤气中CO2含量,有利于合成氨的生产。 (2)、灰熔聚流化床粉煤气化技术 灰熔聚煤气化技术以小于6mm粒径的干粉煤为原料,用空气或富氧、水蒸气作气化剂,粉煤和气化剂从气化炉底部连续加入,在炉内(1050~1100)℃的高温下进行快速气化反应,被粗煤气夹带的未完全反应的残碳和飞灰,经两极旋风分离器回收,再返回炉内进行气化,从而提高了碳转化率,使灰中含磷量降低到10%以下,排灰系统简单。粗煤气中几乎不含焦油、酚等有害物质,煤气容易净化,这种先进的煤气化技术中国已自行开发成功。该技术可用于生产燃料气、合成气和联合循环发电,特别用于中小氮肥厂替代间歇式固定床气化炉,以烟煤替代无烟煤生产合成氨原料气,可以使合成氨成本降低15%~20%,具有广阔的发展前景。 U-Gas在上海焦化厂(120吨煤/天)1994年11月开车,长期运转不正常,于2002年初停运;中科院山西煤化所开发的ICC灰熔聚气化炉,于2001年在陕西城化股份公司进行了100吨/天制合成气工业示范装置试验。CFB、PFB可以生产燃料气,但国际上尚无生产合成气先例;Winkler已有用于合成气生产案例,但对粒度、煤种要求较为严格,甲烷含量较高(0.7%~2.5%),而且设备生产强度较低,已不代表发展方向。 3、气流床气化 气流床气化是一种并流式气化。从原料形态分有水煤浆、干煤粉2类;从专利上分,Texaco、Shell最具代表性。前者是先将煤粉制成煤浆,用泵送入气化炉,气化温度1350~1500℃;后者是气化剂将煤粉夹带入气化炉,在1500~1900℃高温下气化,残渣以熔渣形式排出。在气化炉内,煤炭细粉粒经特殊喷嘴进入反应室,会在瞬间着火,直接发生火焰反应,同时处于不充分的氧化条件下,因此,其热解、燃烧以吸热的气化反应,几乎是同时发生的。随气流的运动,未反应的气化剂、热解挥发物及燃烧产物裹夹着煤焦粒子高速运动,运动过程中进行着煤焦颗粒的气化反应。这种运动状态,相当于流化技术领域里对固体颗粒的“气流输送”,习惯上称为气流床气化。 气流床对煤种(烟煤、褐煤)、粒度、含硫、含灰都具有较大的兼容性,国际上已有多家单系列、大容量、加压厂在运作,其清洁、高效代表着当今技术发展潮流。 干粉进料的主要有K-T(Koppres-Totzek)炉、Shell- Koppres炉、Prenflo炉、Shell炉、GSP炉、ABB-CE炉,湿法煤浆进料的主要有德士古(Texaco)气化炉、Destec炉。 (1)、德士古(Texaco)气化炉 美国Texaco(2002年初成为Chevron公司一部分,2004年5月被GE公司收购)开发的水煤浆气化工艺是将煤加水磨成浓度为60~65%的水煤浆,用纯氧作气化剂,在高温高压下进行气化反应,气化压力在3.0~8.5MPa之间,气化温度1400℃,液态排渣,煤气成份CO+H2为80%左右,不含焦油、酚等有机物质,对环境无污染,碳转化率96~99%,气化强度大,炉子结构简单,能耗低,运转率高,而且煤适应范围较宽。目前Texaco最大商业装置是Tampa电站,属于DOE的CCT-3,1989年立项,1996年7月投运,12月宣布进入验证运行。该装置为单炉,日处理煤2000~2400吨,气化压力为2.8MPa,氧纯度为95%,煤浆浓度68%,冷煤气效率~76%,净功率250MW。 Texaco气化炉由喷嘴、气化室、激冷室(或废热锅炉)组成。其中喷嘴为三通道,工艺氧走一、三通道,水煤浆走二通道,介于两股氧射流之间。水煤浆气化喷嘴经常面临喷口磨损问题,主要是由于水煤浆在较高线速下(约30m/s)对金属材质的冲刷腐蚀。喷嘴、气化炉、激冷环等为Texaco水煤浆气化的技术关键。 80年代末至今,中国共引进多套Texaco水煤浆气化装置,用于生产合成气,我国在水煤浆气化领域中积累了丰富的设计、安装、开车以及新技术研究开发经验与知识。 从已投产的水煤浆加压气化装置的运行情况看,主要优点:水煤浆制备输送、计量控制简单、安全、可靠;设备国产化率高,投资省。由于工程设计和操作经验的不完善,还没有达到长周期、高负荷、稳定运行的最佳状态,存在的问题还较多,主要缺点:喷嘴寿命短、激冷环寿命仅一年、褐煤的制浆浓度约59%~61%;烟煤的制浆浓度为65%;因汽化煤浆中的水要耗去煤的8%,比干煤粉为原料氧耗高12%~20%,所以效率比较低。 (2)、Destec(Global E-Gas)气化炉 Destec气化炉已建设2套商业装置,都在美国:LGT1(气化炉容量2200吨/天,2.8MPa,1987年投运)与Wabsh Rive(二台炉,一开一备,单炉容量2500吨/天,2.8MPa,1995年投运)炉型类似于K-T,分第一段(水平段)与第二段(垂直段),在第一段中,2个喷嘴成180度对置,借助撞击流以强化混合,克服了Texaco炉型的速度成钟型(正态)分布的缺陷,最高反应温度约1400℃。为提高冷煤气效率,在第二阶段中,采用总煤浆量的10%~20%进行冷激(该点与Shell、Prenflo的循环没气冷激不同),此处的反应温度约1040℃,出口煤气进火管锅炉回收热量。熔渣自气化炉第一段中部流下,经水冷激固化,形成渣水浆排出。E-Gas气化炉采用压力螺旋式连续排渣系统。 Global E-Gas气化技术缺点为:二次水煤浆停留时间短,碳转化率较低;设有一个庞大的分离器,以分离一次煤气中携带灰渣与二次煤浆的灰渣与残炭。这种炉型适合于生产燃料气而不适合于生产合成气。 (3)、Shell气化炉 最早实现工业化的干粉加料气化炉是K-T炉,其它都是在其基础之上发展起来的,50年代初Shell开发渣油气化成功,在此基础上,经历了3个阶段:1976年试验煤炭30余种;1978年与德国Krupp-Koppers(krupp-Uhde公司的前身)合作,在Harburg建设日处理150t煤装置;两家分手后,1978年在美国Houston的Deer Park建设日处理250t高硫烟煤或日处理400t高灰分、高水分褐煤。共费时16年,至1988年Shell煤技术运用于荷兰Buggenum IGCC电站。该装置的设计工作为1.6年,1990年10月开工建造,1993年开车,1994年1月进入为时3年的验证期,目前已处于商业运行阶段。单炉日处理煤2000t。 Shell气化炉壳体直径约4.5m,4个喷嘴位于炉子下部同一水平面上,沿圆周均匀布置,借助撞击流以强化热质传递过程,使炉内横截面气速相对趋于均匀。炉衬为水冷壁(Membrame Wall),总重500t。炉壳于水冷管排之间有约0.5m间隙,做安装、检修用。 煤气携带煤灰总量的20%~30%沿气化炉轴线向上运动,在接近炉顶处通入循环煤气激冷,激冷煤气量约占生成煤气量的60%~70%,降温至900℃,熔渣凝固,出气化炉,沿斜管道向上进入管式余热锅炉。煤灰总量的70%~80%以熔态流入气化炉底部,激冷凝固,自炉底排出。 粉煤由N2携带,密相输送进入喷嘴。工艺氧(纯度为95%)与蒸汽也由喷嘴进入,其压力为3.3~3.5MPa。气化温度为1500~1700℃,气化压力为3.0MPa。冷煤气效率为79%~81%;原料煤热值的13%通过锅炉转化为蒸汽;6%由设备和出冷却器的煤气显热损失于大气和冷却水。 Shell煤气化技术有如下优点:采用干煤粉进料,氧耗比水煤浆低15%;碳转化率高,可达99%,煤耗比水煤浆低8%;调解负荷方便,关闭一对喷嘴,负荷则降低50%;炉衬为水冷壁,据称其寿命为20年,喷嘴寿命为1年。主要缺点:设备投资大于水煤浆气化技术;气化炉及废锅炉结构过于复杂,加工难度加大。 我公司直接液化项目采用此技术生产氢气。 (4)、GSP气化炉 GSP(GAS Schwarze Pumpe)称为“黑水泵气化技术”,由前东德的德意志燃料研究所(简称DBI)于1956年开发成功。目前该技术属于成立于2002年未来能源公司(FUTURE ENERGY GmbH)(Sustec Holding AG子公司)。GSP气化炉是一种下喷式加压气流床液态排渣气化炉,其煤炭加入方式类似于shell,炉子结构类似于德士古气化炉。1983年12月在黑水泵联合企业建成第一套工业装置,单台气化炉投煤量为720吨/天,1985年投入运行。GSP气化炉目前应用很少,仅有5个厂应用,我国还未有一台正式使用,宁煤集团(我公司控股)将要引进此技术用于煤化工项目。 总之,从加压、大容量、煤种兼容性大等方面看,气流床煤气化技术代表着气化技术的发展方向,水煤浆和干煤粉进料状态各有利弊,界限并不十分明确,国内技术界也众说纷纭。

3、我国煤气化技术进展

煤气化技术在中国已有近百年的历史,但仍然较落后和发展缓慢,就总体而言,中国煤气化以传统技术为主,工艺落后,环保设施不健全,煤炭利用效率低,污染严重。目前在国内较为成熟的仍然只是常压固定床气化技术。它广泛用于冶金、化工、建材、机械等工业行业和民用燃气,以UGI、水煤气两段炉、发生炉两段炉等固定床气化技术为主。常压固定床气化技术的优点是操作简单,投资小;但技术落后,能力和效率低,污染重,急需技术改造。如不改变现状,将影响经济、能源和环境的协调发展。 近40年来,在国家的支持下,中国在研究与开发、消化引进技术方面进行了大量工作。我国先后从国外引进的煤气化技术多种多样。通过对煤气化引进技术的消化吸收,尤其是通过国家重点科技攻关,对引进装置进行技术改造并使之国产化,使我国煤气化技术的研究开发取得了重要进展。50年代末到80年代进行了仿K-T气化技术研究与开发;80年代中科院山西煤化所开发了灰熔聚流化床煤气化工艺并取得了专利;“九五”期间华东理工大学、兖矿鲁南化肥厂、中国天辰化学工程公司承担了国家重点科技攻关项目“新型(多喷嘴对置)水煤浆气化炉开发”(22吨煤/天装置),中试装置的结果表明:有效气成分~83%,比相同条件下的Texaco生产装置高1.5~2个百分点;碳转化率98%,比Texaco高2~3个百分点;比煤耗、比氧耗均比Texaco降低7%。 “十五”期间多喷嘴对置式水煤浆气化技术已进入商业示范阶段。“新型水煤浆气化技术”获“十五”国家高技术研究发展计划(863计划)立项,由兖矿集团有限公司、华东理工大学承担,在兖矿鲁南化肥厂建设多喷嘴对置式水煤浆气化炉及配套工程,利用两台日处理1150吨煤多喷嘴对置式水煤浆气化炉(4.0MPa)配套生产24万吨甲醇、联产71.8MW发电,总投资为~16亿元。该装置于2005年7月21日一次投料成功,并完成80小时连续、稳定运行。装置初步运行结果表明:有效气CO+H2超过82%,碳转化率高于98%。它标志着我国拥有了具备自主知识产权的、与国家能源结构相适应的煤气化技术具有重大的突破,其水平填补了国内空白,并达到国际先进水平。

煤矿巷道施工方法有哪些其主要工序

煤炭井下巷道施工的主要方法主要是两种,炮掘和综掘,详细如下:

1 炮掘,即打眼放炮,先在掘进壁上打出炮眼,一般分三花眼,五花眼等类型,炮眼打完之后,清孔,验收完成之后,装入炸药卷,引线等,撤出人员,发出信号,起爆,排除哑炮之后,人员进入,清理工作面,运出爆落的岩石或者煤,即完成了一个回次的掘进,特点是环节较多,受制约条件多,人员劳动强度大,工艺较成熟;

2 综掘,即综合机械化掘进工艺,使用掘进机进行掘进,配套转运机皮带机进行煤岩的运输,人员劳动强度小,掘进效率高,进度快。

发表评论

评论列表

  • 听弧世味(2022-06-13 10:30:35)回复取消回复

    、施工中安全施工的催促,革除业主因为施工人员的工伤而发生不必要的费用等.5、添加工程量的监理签证,革除业主付冤枉钱.6、装饰合同的办理.煤炭的种类和特性煤炭的种类:1、焦煤焦煤是炼焦用煤中之主焦煤,变质程度中等,结焦性和粘结性最佳。利用焦煤,可得到

  • 晴枙囤梦(2022-06-13 13:33:02)回复取消回复

    指由矿物材料与其他材料组成的混合体系,称为复合材料。复合材料又分为无机复合材料、无机与有机复合材料和混杂复合材料三类: (1)无机复合材料是指由两种或两种以上无机矿物材料组成的

  • 余安断渊(2022-06-13 14:53:23)回复取消回复

    料的研究,目前人们将矿物材料的分类方法定为以下三种:第一,按照矿物材料中主要矿物名称分类;第二,按照矿物材料的结构分类;第三,按照矿物材料的功能分类。其中按照矿物材料中主要矿物名称分类是一种最古老的分类方法,是用

  • 辙弃晚雾(2022-06-13 18:51:33)回复取消回复

    弱的煤搭配后炼出优质煤称肥煤为配焦煤之母。3、无烟煤无烟煤是高变质煤,具有坚硬、光泽强等特点。燃烧时间长,火力旺。无烟煤主要用于化肥、化工生产。阳泉无烟煤因具有可磨好的特点,是理想的高炉喷吹用燃料。煤的特性:1、煤主要有碳、氢

  • 嘻友逃夭(2022-06-13 07:35:59)回复取消回复

    性膨润土、氟化石墨、熟石膏等)以及结构改性类(如膨胀珍珠岩、膨胀蛭石、膨胀石墨、岩棉等)等。 3) 人工矿物材料。这是模拟天然矿物或岩石生成的原理采用人工合成的矿物材料。包括人工晶体(如人造水晶、人造金刚石、人造宝石、矿物晶须等)、多孔