狭义的计量经济学模型(计量经济学模型解释)
本文目录一览:
计量经济学中6种模型分别是什么?
经济学模型有很多,没有确定狭义的计量经济学模型的多少种。包括宏观经济学、微观经济学、国际经济学、流通经济学、计量经济学等等,各门课中都有许多相关的经济学模型。如生产模型,索洛模型,罗默模型,IS_ID模型、是IS-LM-BP模型,总需求-总供给模型和蒙代尔弗莱明模型等等。
经济模型是一种分析方法,它极其简单地描述现实世界的情况。现实世界的情况是由各种主要变量和次要变量构成的,非常错综复杂,因而除非把次要的因素排除在外,否则就不可能进行严格的分析,或使分析复杂得无法进行。
通过作出某些假设,可以排除许多次要因子,从而建立起模型。这样一来,便可以通过模型对假设所规定的特殊情况进行分析。经济模型本身可以用带有图表或文字的方程来表示。
理论模型的设计
在单方程模型中,变量分为两类。作为研究对象的变量,也就是因果关系中的“果”,例如生产函数中的产出量,是模型中的被解释变量;而作为“原因”的变量,例如生产函数中的资本、劳动、技术,是模型中的解释变量。确定模型所包含的变量,主要是指确定解释变量。可以作为解释变量的有下列几类变量狭义的计量经济学模型:外生经济变量、外生条件变量、外生政策变量和滞后被解释变量。其中有些变量,如政策变量、条件变量经常以虚变量的形式出现。
以上内容参考:百度百科-计量经济模型
计量经济学有哪些模型
计量经济学模型是用截面数据作为计量经济学模型狭义的计量经济学模型的样本数据狭义的计量经济学模型,应注意以下几个问题。一是样本与母体的一致性问题。
计量经济学模型的参数估计狭义的计量经济学模型,从数学上讲狭义的计量经济学模型,是用从母体中随机抽取的个体样本估计母体的参数狭义的计量经济学模型,那么要求母体与个体必须是一致的。例如,估计煤炭企业的生产函数模型,只能用煤炭企业的数据作为样本,不能用煤炭行业的数据。那么,截面数据就很难用于一些总量模型的估计,例如,建立煤炭行业的生产函数模型,就无法得到合适的截面数据。
计量经济模型包括一个或一个以上的随机方程式,它简洁有效地描述、概括某个真实经济系统的数量特征,更深刻地揭示出该经济系统的数量变化规律。是由系统或方程组成,方程由变量和系数组成。其中,系统也是由方程组成。计量经济模型揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。
计量经济学模型为证券投资而进行宏观经济分析,计量经济学主要应运用宏观计量经济棋型。
所谓宏观计量经济模型是指在宏观总量水平上把握和反映经济运行较全面的动态特征,计量经济学研究宏观经济主要指标间的相互依存关系。
计量经济学模型描述国民经济各部门和社会再生产过程各环节之间的联系,计量经济学并可用于宏观经济结构分析、计量经济学政策模拟、计量经济学决策研究以及发展预测等功能的计盆经济模型。
狭义计量经济模型是指
理论模型的设计
对所要研究的经济现象进行深入的分析狭义的计量经济学模型,根据研究的目的,选择模型中将包含的因素,根据数据的可得性选择适当的变量来表征这些因素,并根据经济行为理论和样本数据显示出的变量间的关系,设定描述这些变量之间关系的数学表达式,即理论模型。理论模型的设计主要包含三部分工作,即选择变量、确定变量之间的数学关系、拟定模型中待估计参数的数值范围。1. 确定模型所包含的变量
计量经济模型
在单方程模型中,变量分为两类。作为研究对象的变量,也就是因果关系中的“果”,例如生产函数中的产出量,是模型中的被解释变量狭义的计量经济学模型;而作为“原因”的变量,例如生产函数中的资本、劳动、技术,是模型中的解释变量。确定模型所包含的变量,主要是指确定解释变量。可以作为解释变量的有下列几类变量狭义的计量经济学模型:外生经济变量、外生条件变量、外生政策变量和滞后被解释变量。其中有些变量,如政策变量、条件变量经常以虚变量的形式出现。
严格地说,上述生产函数中的产出量、资本、劳动、技术等,只能称为“因素”,这些因素间存在着因果关系。为了建立起计量经济学模型,必须选择适当的变量来表征这些因素,这些变量必须具有数据可得性。于是,我们可以用总产值来表征产出量,用固定资产原值来表征资本,用职工人数来表征劳动,用时间作为一个变量来表征技术。这样,最后建立的模型是关于总产值、固定资产原值、职工人数和时间变量之间关系的数学表达式。下面,为了叙述方便,我们将“因素”与“变量”间的区别暂时略去,都以“变量”来表示。
关键在于,在确定了被解释变量之后,怎样才能正确地选择解释变量。
首先,需要正确理解和把握所研究的经济现象中暗含的经济学理论和经济行为规律。这是正确选择解释变量的基础。例如,在上述生产问题中,已经明确指出属于供给不足的情况,那么,影响产出量的因素就应该在投入要素方面,而在当前,一般的投入要素主要是技术、资本与劳动。如果属于需求不足的情况,那么影响产出量的因素就应该在需求方面,而不在投入要素方面。这时,如果研究的对象是消费品生产,应该选择居民收入等变量作为解释变量狭义的计量经济学模型;如果研究的对象是生产资料生产,应该选择固定资产投资总额等变量作为解释变量。由此可见,同样是建立生产模型,所处的经济环境不同、研究的行业不同,变量选择是不同的。
其次,选择变量要考虑数据的可得性。这就要求对经济统计学有透彻的了解。计量经济学模型是要在样本数据,即变量的样本观测值的支持下,采用一定的数学方法估计参数,以揭示变量之间的定量关系。所以所选择的变量必须是统计指标体系中存在的、有可靠的数据来源的。如果必须引入个别对被解释变量有重要影响的政策变量、条件变量,则采用虚变量的样本观测值的选取方法。
第三,选择变量时要考虑所有入选变量之间的关系,使得每一个解释变量都是独立的。这是计量经济学模型技术所要求的。当然,在开始时要做到这一点是困难的,如果在所有入选变量中出现相关的变量,可以在建模过程中检验并予以剔除。
从这里可以看出,建立模型的第一步就已经体现了计量经济学是经济理论、经济统计学和数学三者结合的思想。
在选择变量时,错误是容易发生的。下面的例子都是从已有的计量经济学应用研究成果中发现的,代表了几类容易发生的错误。例如
农副产品出口额 = -107.66+0.13×社会商品零售总额十0.22×农副产品收购额
这里选择了无关的变量,因为社会商品零售总额与农副产品出口额无直接关系,更不是影响农副产品出口额的原因。再如
生产资料进口额 = 0.73×轻工业投资+0.21×出口额+0.18×生产消费+67.60×进出口政策
这里选择了不重要的变量,因为轻工业投资对生产资料进口额虽有影响,但不是重要的,或者说是不完全的,重要的是全社会固定资产投资额,应该选择这个变量。再如
农业总产值 = 0.78+0.24×粮食产量+0.05×农机动力—0.21×受灾面积
这里选择了不独立的变量,因为粮食产量是受农机动力和受灾面积影响的,它们之间存在相关性。
值得注意的是上述几个模型都能很好地拟合样本数据,所以绝对不能把对样本数据的拟合程度作为判断模型变量选择是否正确的主要标准。
变量的选择不是一次完成的,往往要经过多次反复。
确定模型的数学形式
选择了适当的变量,接下来就要选择适当的数学形式描述这些变量之间的关系,即建立理论模型。