幼儿科学地球实验形成(儿童地球科普)
本文目录一览:
地球是怎么形成的
宇宙形成后
大约在50亿年前,银河系里弥漫着大量的星云物质。它们因自身引力作用而收缩,在收缩过程中产生的旋涡使星云破裂成许多“碎片”。其中,形成太阳系的那些碎片,就称为太阳星云。太阳星云中含有不易挥发的固体尘粒。这些尘粒相互结合,形成越来越大的颗粒环状物,并开始吸附周围一些较小的尘粒,从而使体积日益增大,逐渐形成了地球星胚。地球星胚在一定的空间范围内运动着,并且不断地壮大自己。于是,原始地球就形成了。原始地球经过不断的运动与壮大,最终形成了今天的模样。
原始地球的形成
在地球形成之前,宇宙中有许多小行星绕著太阳转,这些行星互相撞击, 形成了原始的地球,当时的地球还是一颗灸热的大火球,随著碰撞渐渐减少,地球开始由外往内慢慢冷却,产生了一层薄薄的硬壳--地壳,这时候地球内部还是呈现炽热的状态。
大气与海洋的形成
地球内部喷出大量气体, 其中带著大量的水蒸气,这些水蒸气就形成了一圈包围在地球外围的大气层,地球距离太阳的位置不会太近而致使水蒸气被太阳蒸干,地球本身的大小又有足够的引力将大气层拉住,所以地球才会有得天独厚的大气环境,
大气层形成之后就开始降雨,而形成了原始的海洋。
大约在47亿年前,宇宙中尘埃聚集,形成了地球及其所在的太阳系的其他星球。当时的空气中不含有氧气,而含有很多二氧化碳(碳酸气体)、氮气。
最初的地球很小,但不断有宇宙中的尘埃及小的星体撞击,体积不断增大。而且撞击时能量聚集,温度不断上升,最终融化为液体。
不久,星体撞击的次数减少,地球表面的温度降低,形成地壳。这就是今天的地表。但是,地球内部的岩浆不断喷涌,形成大量的火山。火山灰中的水蒸气冷却凝结为水,从而形成海洋。
46亿年前,由于两颗金星水星大小的行星发生了相撞,进而产生了现在的地球和月球。地球演化大致可分为三个阶段。
第一阶段为地球圈层形成时期,其时限大致距今4600至4200Ma【百万年】。刚刚诞生时候的地球与今天大不相同。根据科学家推断,地球形成之初是一个由炽热液体物质(主要为岩浆)组成的炽热的球。随着时间的推移,地表的温度不断下降,固态的地核逐渐形成。密度大的物质向地心移动,密度小的物质(岩石等)浮在地球表面,这就形成了一个表面主要由岩石组成的地球。 第二阶段为太古宙,元古宙时期。其时限距今4200至543Ma。地球自不间断地向外释放能量。由高温岩浆不断喷发释放的水蒸气,二氧化碳等气体构成了非常稀薄的早期大气层---原始大气。随着原始大气中的水蒸气的不断增多,越来越多的水蒸气凝结成小水滴,再汇聚成雨水落入地表。就这样,原始的海洋形成了。
第三阶段为显生宙时期,其时限由543Ma至今。显生宙延续的时间相对短暂,但这一时期生物及其繁盛,地质演化十分迅速,地质作用丰富多彩,加之地质体遍布全球各地,广泛保存,可以极好的对其进行观察和研究,为地质科学的主要研究对象,并建立起了地质学的基本理论和基础知识。
为了证明生命起源与地球,人们在不断通过实验和推测等研究方法,提出各种假设来解释生命诞生。1953年美国青年学者米勒(Stanley L.Miller)在实验室用充有甲烷(CH4),氨气(NH3),氢气(H2)和水(H2O)的密闭装置,以放电,加热来模拟原始地球的环境条件,合成了一些氨基酸,有机酸和尿素等物质,轰动了科学界。这个实验的结果更具说服力地表明,早期地球完全有能力孕育生命体,原始生命物质可以在没有生命的自然条件下产生出来。
一些有机物质在原始海洋中,经过长期而又复杂的化学变化,逐渐形成了更大,更复杂的分子,直到形成组成生物体的基本物质---蛋白质,以及作为遗传物质的核酸等大分子物质。在一定条件下,蛋白质和核酸等物质经过浓缩,凝聚等作用,形成了一个由多种分子组成的体系,外面有了一层膜,与海水隔开,在海水中又经历了漫长,复杂的变化,最终形成了原始的生命。
总之,地球的演变使得生命诞生于地球。
当我们拥有了较为完整和清晰的太阳系模型后,我们就有可能进一步对地球的形成进行探讨。在已掌握的知识基础上,我们自然不会再认为地球的形成是完全孤立和自发的,因为太阳作为太阳系大家庭的一员已经相当明确了。但是,我们有理由对46 亿年前地球及太阳系中其他星体的成因提出质疑。
法国自然科学家乔治·路易斯·布丰没有依据《圣经》的故事解答这个问题(《圣经》当然没有任何的科学依据)。这位自然科学家早就认为地球已存在了7.5 万年了。1749 年,布丰解释说,包括地球在内的行星和巨大的太阳间存在着“亲缘”关系,正如小鸡同母鸡的关系一样。也许,他曾想到地球是太阳生出来的。
布丰曾认为太阳与其他巨型的天体产生过碰撞,在碰撞过程中散落下来的碎块,冷却下来以后,形成了地球。这种假设很有意思,只是没有说明其他行星及太阳形成的原因。或许太阳原本就是存在的。
我们需要一个更合理的解释,在开普勒描绘了太阳系的宏图后,这个系统的概貌就非常明确了。所有的行星几乎是在同一平面上运行的(这一套完整的太阳系模型类似于一个巨大的比萨盒),而且是沿着一个方向绕着太阳转,就像月亮绕着地球旋转或土星的卫星绕着土星旋转一样。另外,这些星球也绕着自己的轴做定向的自转,太阳亦是如此。天文学家们由此得到启迪,他们相信,如果太阳系不是来自于同一物体,就不可能呈现出这么多的相似之处。
在研究地球的成因之前,首先要探讨太阳是怎样形成的。这一研究的结论不仅仅用于其他行星上,而且对宇宙间其他星空的形成有参考价值。1611 年是早期望远镜试用时期,德国天文学家赛芝·马吕斯在观察中发现仙女星座上有一团发亮的朦胧物,我们称它为仙女座的星云(星云是拉丁语,意思是“云彩”)。1694 年,海更斯(钟摆的发明人)观察猎户星座时也发现了相似的星云,这就是猎户座星云。此后,其他的星云也被发现了。
人们曾推测,这些发光的星云是多种灰尘和气体的组合物,而这些组合物尚未聚合成真正的星体。1755 年德国哲学家埃马谬洛·康特在他的著作中设想过,所有星体的雏型就是这些星云,他认为星云可以靠自身的力量慢慢地聚在一起,并慢慢地开始转动。当星云聚集时,中心部分就形成了恒星,外围的部分就形成了行星。这种设想基本上解释了行星运行在同一平面上,且公转和自转的方向一致的道理。
1798 年,法国天文学家帕瑞·赛芝·德·拉普拉斯很可能不了解卡特以前所做的工作,他在一本著作中描述了同样的观点,只是他写的内容更详细。他认为星云在慢慢地收缩,在星云收缩的过程中,星云旋转的速度迅速地加快。其实这个设想并非是拉普拉斯的创举,收缩只是引力作用的结果而已,在太阳系里这已是司空见惯的现象,即作功现象。每个滑冰者都曾有这种尝试。当你在冰面上旋转时,把胳膊收得越紧,自身旋转的速度越快。星云在收缩中,它的旋转速度越来越快,其中心部位向外凸起并且脱离了原位置。该过程并非虚构,它是离心力作用的结果,这种现象在地球上随处可见。拉普拉斯设想的那些“脱落”的部分聚集在一起,最后形成了一个行星。此时,稍靠中心的星云仍在聚集,从而诞生了另一颗行星。这样继续下去,一颗颗行星渐渐形成了,它们沿着同一个方向转了起来。最后在中心区剩下的部分形成了太阳。由于卡特和拉普拉斯是以星云的收缩理论为依据解释太阳系形成过程的,所以称这一假说为“星云假说”(这一理论未能以充足的理由证明)。
一个世纪以来,天文学家们对“星云假说”这一理论还是满意的。遗憾的是,这一理论的不足之处也相继显露出来。其原因来自“角动量”这一概念。角动量是度量物体旋转能力的一个物理量,该物体既有绕自转轴的转动,还有绕公转轴的转动。木星在绕自己的轴自转时,也在绕太阳进行公转。它的角动量是巨型太阳角动量的30 倍,而所有行星角动量的总和是太阳角动量的50 倍。如果太阳系形成初期只是单一的带有角动量的星云的话,怎么会在那么小的质量上集中了那么多的角动量,并在释放之后形成这些行星呢?天文学家没能在“星云假说”中找到答案, 于是开始寻求其他的理论了。1900 年,美国科学家托马斯·卓乌德·章伯伦和弗瑞斯特·雷·摩尔顿在研究中重新拾起布丰的理论。他们认为,在很久很久以前,当另一颗星体经过太阳附近时,在引力的作用下,彼此间各有一部分脱离了它们的母体而形成了新的个体,这些新个体在引力作用下急剧地旋转,从而获得大量的角动量。这些个体分离后渐渐冷却下来,体积也随之减小,成为固体或是微星,微星在进一步碰撞时形成行星。来自两颗星体的物质聚集在一起,形成行星家族,这一假设称为“微星学说”。
上述两种观点存在着重要的不同点。如果“星云说”是正确的,则每个星体都可以形成行星;如果“微星说”是正确的,只有恒星经历过碰撞后才能有条件形成行星,而恒星间的距离是很远的,且移动又相当缓慢,与其距离相比,它们之间的碰撞是极为罕见的。于是,两种观点的区别在于:“星云学说”认为许许多多的星系可以形成,而“微星学说”认为只有在极少数的恒星中才能形成星系。
正如事实表明的那样,“微星说”也是不合理的。1920 年,英国天文学家阿瑟·斯坦莱·爱丁顿指出:太阳内部的温度比人们想象的要高得多,从太阳上分离下来的物质(或从其他恒星上掉下来的物质)都很热,以至于它们尚未来得及冷却形成行星时,就扩散到宇宙空间去了。美国天文学家莱曼·斯皮特泽在1939 年做出了令人信服的展示。
1944 年,德国科学家卡尔·夫兰垂·克·冯·韦茨萨克重拾“星云假说”,并将这一理论进一步发展、提高。他认为旋转的星云是逐级收缩而形成行星的,首先是第一颗,然后是其他颗依次而成。天文学家们可以把星云中的电磁作用考虑进去(在拉普拉斯时代,电磁现象还未被发现),以此解释角动量是以什么形式由太阳转移到行星上去的。
顺便提一下,由微星形成行星的过程中,地球内部的热呈何种状态?微星移动速度非常快,它蕴藏着巨大的动能,在碰撞过程中,运动暂时停止了,于是部分动能变成了热能,而后又开始运转形成行星。动能转换成的热能相当大,这就是地心温度达到5000℃的原因。很明显,星体越大,能量转化的程度越高,形成行星后的核心温度越高;同理,星体体积越小,所蕴藏的动能越少,形成行星时核心的温度就低。可以肯定,月球中心的温度要低于5000℃,其原因就是它比地球小得多。而木星呢,它比地球大得多,它是这几颗行星中最大的一颗行星,肯定地讲,它核心的温度要更高一些,有些预测认为木星核心温度可达5 万℃。到目前为止,“星云假说”理论还是令人满意的。
在浑沌初开时……科学家无法绝对有把握地接着这句话写下去。这好比要一个孩子描述自己出生的过程或胎儿的生活一样难。各种宗教经典有关开天辟地的解说,话说得很牵强,而且各种说法也不尽相同。然而有些说法倒非常接近科学家对地球起源的概念,至少可以说,接近科学家根据古老岩石中所找到的证据而作出的解释。
我们探索地球起源时,必须同时设法解释太阳系的起源,因为地球的历史与地球近邻的历史有密切关系。一七五五年,德国哲学家康德发表了一套天体论说,认为太阳系最初是一团浩瀚无边、由尘与气形成的冷云,不停旋转。今天的天文学家都接受这种说法。他们利用非常强力的现代望远镜,看到遥远星际间漂浮着暗黑的尘云。这种云甚至现在看来犹如康德想象中的太阳系旋转云。
一七九六年,与康德同时代的法国数学家拉普拉斯把康德的概念又推进一步,解释太阳系怎样由这一团云形成的。拉普拉斯假设,这一大团云受宇宙力的作用而旋转,同时受本身物质的引力作用而渐渐收缩。收缩中的云间歇地向太空散发无数粒子幕,粒子最后凝聚成行星。在此期间,云团的中心也在本身引力的作用下,收缩成太阳。拉普拉斯的概念虽然可使人折服,可是已被后期发现的基本物理定律所推翻。据这些定律推断,收缩中的太阳,体积越来越小时,旋转会越来越快,假如一直维持到今天,太阳自转的速度就会比目前快得多。
拉普拉斯凭丰富想象力建立的学说,经证明有不少缺点后,天文学家就提出一些其他似乎可认可的说法。其中一种学说假定太阳最先产生,还没有行星。后来,太空中有另一个星球从太阳附近掠过,把一长条物质扯了出来。掠过的星球继续飞行,这些物质于是凝聚成太阳系的行星。可惜的是,仔细分析显示,从太阳扯出的这种炽热物质会消散掉,不会形成行星。即使在某种未知的过程下凝聚成了行星,运行的轨道也会远较今日太阳系中的轨道为不规律。另一种学说认为,在太古的宇宙中,太阳有一个孪生伴星,一个掠过的星球与太阳的伴星相撞。在撞击下产生的碎块,就可能形成几颗行星,环绕着留下来的太阳运行。但散布太空的星宿相距那么远,这种碰撞极不可能发生。即使真的发生了这种灾难,星球爆炸时产生的炽热和可挥发性物质,似乎也不可能直接形成行星。“偶遇”与“碰撞”两种学说,也都无法解释另一现象:很多行星又怎么会有卫星。
今天,在天文学家、数学家、化学家和物质学家的联合努力下,已经出现一种新学说,称为“星云说”或“原行星说”。这个新假设说为许多似是全然相异的物质怎样形成的细节,作出统一连贯的解释,因而多数宇宙论学者已经相信,新假说至少能正确地说明宇宙演化的概况。
“原行星说”重提康德及拉普拉斯的说法,假设目前是太阳系领域的太空中,过去有过一大片气云弥漫其间。这种气是由“宇宙混合物”组成,即宇宙到处都有的气分子混合物。每一千个原子中,九百个是氢,九十九个是氦,其余三个原子是较重的元素,例如碳、氧、铁等。原生云慢慢开始转动。旋转情形大概并不是平稳的,据最近利用射电望远镜观察遥远太空中类似气云所知,天文学家相信在旋转时必有湍流。事实上,旋转中的云看来像一个旋涡,而整个气团在太空中转动时,不断有局部的小涡流出现。中央部分的一个大涡流,比云团其他部分收缩得较为迅速,形成一个黑暗而密度较大的物体,即“原太阳”。
环绕原太阳的云团中,在冰冷深处某些气的原子结合成化合物,例如水和氨。固态的尘晶慢慢结成,铁和坚硬的矽酸盐等金属晶体也是一样。云团旋转时受到引力与离心的作用,逐渐成为巨大的扁平圆盘。假如我们能从遥远处观察当时情景,就会看到一个好象转动中的大唱片的东西,中央那个小洞就是原太阳所在。
在这个转动的圆盘中,局部涡流继续出现。有些旋涡必在碰撞时破毁,有些被原太阳逐渐增强的引力弄散。就某种意义来说,每个小涡流都在不停地挣扎图存。面对这种破坏力,涡流要保持不破不散就得聚集足够数量的物质,作为本身的重心。在这个旋转体系内的存亡战中,有些局部涡旋获得物质,有些失掉物质。环绕前太阳终于产生了一系列旋转的圆盘。每个都是一颗原行星。
这些原行星都大得足以在本身引力场内合为一体。每颗行星在太空中环绕太阳运行时,都像一名清道夫,把原来云团里的剩余物质扫清。
在这个阶段中,原太阳的核心开始热核聚变,放出大量的能。原太阳也开始发光。初时,间歇地“燃烧”,呈暗红色。最后成为我们今天看到的金黄色恒星。别忘了原太阳直径比任何原行星直径大一百倍左右。原太阳成为恒星而非行星,当然是由于体积有这么巨大的差异。原太阳的强大引力,足以把轻的氢原子吸住,留在内部,触发热核聚变。较小的原行星,则不能起这种作用。
然后,在原太阳领域内的某处,出现一团含有冰冷粒子与固体碎块的旋转云,即一种宇宙尘暴,原地球就这样诞生了。稍后,由于水与冰分子内聚引力作用,这些物质才能凝聚成球状。原地球沿轨道绕太阳运行时,其引力继续收集更多物质。地球和其他行星就是这样在太阳系领域内积聚冷尘的过程中形成的。
在成长中的原地球逐渐热起来。地球继续收集新物质,新物质撞及地球时发出的能量产生热,其中一部分留在地球里。引力作用也使地球凝缩,产生更多热。地球内部的放射性元素逐渐开始蜕变,成为第三个热源。经过亿万年后,地球的温度高得足以使铁、镍等重金属下沉,构成熔融的地核。从地表裂隙逸出的水汽和气体,构成地球的大气层,另一个主要热源——太阳光,这时也会发生作用了。
太阳的辐射这时以全力冲击地球,破坏了原始大气中的分子化合物,还把它驱散进入太空中。因此,大气中的氢和其他轻元素,大部分逃离地球散失了。这个过程终于使宇宙中较重和较稀有的元素密集在一起,而这些元素是构成岩石、植物和人体所不可或缺的。由于亿万年来如氢等许多轻原子逸入了太空,地球此时的质量,比尘云凝聚为原地球时,约减少了一千倍。
月球的起源至今仍然可算是个谜团。我们确实知道,月球和地球都是在太阳系中同一个太空区域形成的。研究月球的科学家认为,月球是从地球分裂出去丽形成的,或者是那些环绕着地球运行的小粒子积聚而形成的,后者的可能性更大。我们确实知道,月球是一度发生过宇宙大剧变的星球,但是现在已经完全静止了。进一步从事太空研究后,月球之谜最后必会获得解答。
地球的历史发展到这个阶段,差不多可以由地质学家着手研究了。地球停止自太空轨道上收集碎物后,表面逐渐冷却下来,变成固体。岩石外壳形成,陆块也出现。但是,地球那时还未能维持我们今天所认识的生物;地表还是太热,不适宜有机体生存,而且大气中也充满有毒的甲烷和氨。熔岩从地壳裂罅流出,使藏在地球熔融内部的水蒸气得以冒出来。事实上,许多地质学家以为,目前各海洋里的水,大部分由这种早期的火山活动带到地表。这些水原来都是凝于冰尘中的。
地球上的火山活动减缓时,太阳的强烈紫外线辐射,把大气里的一部分水分子分解成氢原子和氧原子。地球的引力不足以留住在地球。地球大气演化过程中,虽然释出一些游离氧,但甲烷和氨等气体必然仍长期占优势,因为今天大气中的游离氧,大部分已知是植物(包括湖泊与海洋里的藻类)光合作用的副产品。
地球继续散发热量,逐年冷却下来,而原太阳也渐渐燃烧,到了我们今天所见的明亮程度。过了不久,地球的大气冷却后,使空气中的水汽凝结成雨点,降回地表。最初,雨点滴在灼热的地表上,又汽化为嘶嘶的水蒸气。到后来,地球终于冷却下来,在地表上蓄水成池。没多久,冷却中的大气开始大量降雨。全球各地的水,可能都是一次长期倾盆大雨时降下的。起伏不平的地壳上,低洼地区逐渐注满了水,地表上于是出现海洋。
虽然科学家一般都相信,我们居住的地球经历过上文概述的形成过程,但是无人能断定确切年代。原地球大概在四十六亿年前,发展成现在的大小和形状。其后可能再过于十五亿年,地球上的环境才适宜早期的生物生存。生物的演化,自然是另一回事。这篇文章就是想说明大自然怎样为生物安排一个生存环境。
幼儿自然常识系列之地球是怎么形成的
对地球起源和演化的问题进行系统的科学研究始于十八世纪中叶,至今已经提出过多种学说。一般认为地球作为一个行星,起源于46亿年以前的原始太阳星云。地球和其他行星一样,经历了吸积、碰撞这样一些共同的物理演化过程。
1、地球的形成
形成原始地球的物质主要是星云盘的原始物质,其组成主要是氢和氦,它们约占总质量的98%。此外,还有固体尘埃和太阳早期收缩演化阶段抛出的物质。在地球的形成过程中,由于物质的分化作用,不断有轻物质随氢和氦等挥发性物质分离出来,并被太阳光压和太阳抛出的物质带到太阳系的外部,因此,只有重物质或土物质凝聚起来逐渐形成了原始的地球,并演化为今天的地球。水星、金星和火星与地球一样,由于距离太阳较近,可能有类似的形成方式,它们保留了较多的重物质;而木星、土星等外行星,由于离太阳较远,至今还保留着较多的轻物质。关于形成原始地球的方式,尽管还存在很大的推测性,但大部分研究者的看法一致,即在上述星云盘形成之后,由于引力的作用和引力的不稳定性,星云盘内的物质,包括尘埃层,因碰撞吸积,形成许多原小行星或称为星子,又经过逐渐演化,聚成行星,地球亦就在其中诞生了。根据估计,地球的形成所需时间约为1千万年至1亿年,离太阳较近的行星(类地行星),形成时间较短,离太阳越远的行星,形成时间越长,甚至可达数亿年。
2、地球形成初期的化学性变化
至于原始的地球到底是高温的还是低温的,科学家们也有不同的说法。从古老的地球起源学说出发,大多数人曾相信地球起初是一个熔融体,经过几十亿年的地质演化历程,至今地球仍保持着它的热量。现代研究的结果比较倾向地球低温起源的学说。地球的早期状态究竟是高温的还是低温的,目前还存在着争论。然而无论是高温起源说还是低温起源说,地球总体上经历了一个由热变冷的阶段,由于地球内部又含有热源,因此这种变冷过程是极其缓慢的,地球仍处于继续变冷的过程中。
地球在刚形成时,温度比较低,并无分层结构,后来由于陨石等物质的轰击、放射性衰变致热和原始地球的重力收缩,才使地球的温度逐渐升高,最后成为粘稠的熔融状态。在炽热的火球旋转和重力作用下,地球内部的物质开始分异。较重的物质渐渐地聚集到地球的中心部位,形成地核;较轻的物质则悬浮于地球的表层,形成地壳;介于两者之间的物质则构成了地幔。这样就具备了所谓的层圈结构。
在地球演化早期,原始大气都逃逸了。但随着物质的重新组合和分化,原先在地球内部的各种气体上升到地表成为新的大气层。由于地球内部温度的升高,使内部结晶水汽化。后来随着地表温度的逐渐下降,气态水经过凝结,积聚到一定程度后,又通过降雨重新落到地面,这种情况持续了很长一段时间,于是在地面上形成水圈。
最原始的地壳约在40亿年前出现,而地球以其地壳出现作为界线,地壳出现之前称为天文时期,地壳出现之后则进入地质时期。
3、陆地的起源
有关大陆的起源问题,地质和地球物理学家杜托特(A. L. Du Toit)于1937年在他的《我们漂移的大陆》一书中提出了地球上曾存在两个原始大陆的模式。如果这个模式成立,那么这两个原始大陆分别被称为劳亚古陆(Lanrasia)和冈瓦纳古陆(Gondwanaland);这实际上就象以前魏格纳等人所主张的那样,把全球大陆只拼合为一个古大陆。杜托特认为,两个原始大陆原来是在靠近地球两极处形成的,其中劳亚古陆在北,冈瓦纳古陆在南,在它们形成以后,便逐渐发生破裂,并漂移到今天大陆块体的位置。
早在19世纪末,地质家学休斯(E. Suess)已认识到地球南半球各大陆的地质构造非常相似,并将其合并成一个古大陆进行研究,并称其为冈瓦纳古陆,这个名称源于印度东中部的一个标准地层区名称(Gondwana)。冈瓦纳古陆包括现今的南美洲、非洲、马达加斯加岛、阿拉伯半岛、印度半岛、斯里兰卡岛、南极洲、澳大利亚和新西兰。它们均形成于相同的地质年代,岩层中都存在同种的植物化石,被称为冈瓦纳岩石。杜托特用以证明劳亚古陆和冈瓦纳古陆的存在和漂移的主要证据,是来自地质学、古生物学和古气候学方面。根据三十多年中积累起来的资料,有力地证明冈瓦纳古陆的理论基本上是正确的。
劳亚古陆是欧洲、亚洲和北美洲的结合体,这些陆块即使在现在还没有离散得很远。劳亚古陆有着很复杂的形成和演化历史,它主要由几个古老的陆块合并而成,其中包括古北美陆块、古欧洲陆块、古西伯利亚陆块和古中国陆块。在晚古生代(距今约3亿年前)这些古陆块逐步靠扰并碰撞,大致在石炭纪早中期至二叠纪(即2亿至2亿7千万年前)才逐步闭合。古地质、古气候和古生物资料表明,劳亚古陆在石炭~二叠纪时期位于中、低纬度带。在中生代以后(即最近的1-2亿年间)劳亚大陆又逐步破裂解体,从而导致北大西洋扩张形成。研究表明,全球新的造山地带的形成和分布,都是劳亚古陆和冈瓦纳古陆破裂和漂移的构造结果。在这过程中,大陆岩块的不均匀向西运动和离极运动的规律十分明显。总的看来,劳亚古陆曾位于北半球的中高纬度带,冈瓦纳古陆则曾一度位于南半球的南极附近;这两个大陆之间由被称为古地中海(也称为特提斯地槽)的区域所分隔开。
4、大洋的起源与演化
有关大洋的起源和演化研究从本世纪初才开始,在此之前一般认为大洋盆地是地球表面上永存的形态,也即大洋盆地自从贮水形成以来,其位置和分布格局是固定的。随着地球科学的发展,特别是本世纪初以魏格纳为首的大陆漂移这一革命性的学说的提出,对自最近的2亿多年以来大洋的起源和演化有了突破性的认识。
现代研究证实,大洋最初是在大陆内部孕育的,并开始于大陆岩石圈中的裂谷。大陆在裂谷处破裂并相互分离,从而开始产生新的大洋盆地。魏格纳曾把南大西洋两对岸的吻合作为阐述大陆漂移说的出发点。事实上,把南美洲与非洲两大陆拼合到一起,不仅大陆边沿地形轮廓非常吻合,而且岩石类型和地质构造也可以对接起来。现已证明,大西洋在二叠纪(2亿5千万年前)时还根本不存在,据估计,形成中大西洋的大陆裂谷发生在稍后的三叠纪(约1亿6千万-1亿9千万年前)。至侏罗纪末期(约1亿2千万年前),中大西洋可能已张开达1000公里的宽度;南大西洋的张开大约开始于早白垩纪(约1亿1千万年前),而最初的裂谷发生在晚侏罗纪(约1亿3千万年前);北大西洋张开最晚,大约开始于第三纪初(约6000-7000万年前),与此同时,由北大西洋裂谷向东北延展而伸入格陵兰与欧洲之间,挪威海随之张裂开。从6千万年到2千万年前,挪威海、巴芬海和北大西洋主体都在扩张,但速率和方向均有些变化。综上所述,现今的那些广阔的大洋盆地并不是从来如此,而是长期的地球运动和演化的结果。大洋由狭窄海湾到宽阔盆地的发展,是通过持续发生的大规模海底扩张过程实现的。海底扩张和板块运动的动力都是地幔对流。
由于地球原始地壳自从形成以来,从来没有停止过大规模的地质构造形态的运动。因此,可以肯定地说,现在地球上大洋和陆地的形态就是过去数拾亿年来大规模地壳运动的结果。
本回答由科学教育分类达人 章斌推荐
评论
42 19
任性的公猫391
采纳率:63% 擅长: 暂未定制
其他回答
原始地球的形成
在地球形成之前,宇宙中有许多小行星绕著太阳转,这些行星互相撞击, 形成了原始的地球,当时的地球还是一颗灸热的大火球,随著碰撞渐渐减少,地球开始由外往内慢慢冷却,产生了一层薄薄的硬壳--地壳,这时候地球内部还是呈现炽热的状态。地球内部喷出大量气体,
其中带著大量的水蒸气,这些水蒸气就形成了一圈包围在地球外围的大气层,地球距离太阳的位置不会太近而致使水蒸气被太阳蒸干,地球本身的大小又有足够的引力将大气层拉住,所以地球才会有得天独厚的大气环境,
大气层形成之后就开始降雨,而形成了原始的海洋。
大约在47亿年前,宇宙中尘埃聚集,形成了地球及其所在的太阳系的其他星球。当时的空气中不含有氧气,而含有很多二氧化碳(碳酸气体)、氮气。
最初的地球很小,但不断有宇宙中的尘埃及小的星体撞击,体积不断增大。而且撞击时能量聚集,温度不断上升,最终融化为液体。
不久,星体撞击的次数减少,地球表面的温度降低,形成地壳。这就是今天的地表。但是,地球内部的岩浆不断喷涌,形成大量的火山。火山灰中的水蒸气冷却凝结为水,从而形成海洋。
科学里地球怎么形成的?
科学里地球的形成原因如下:
目前关于地球起源的假说有很多种。但是任何一种假说都有需要证明的地方。目前,地球起源于星云的这种说法认可度是比较高的。
地球形成是伴随着太阳系一起形成的。大约在50亿年前,太阳系还是一片星云。太阳星云是由气体和尘埃组成的一团混合物质,在自转的过程中,受到引力收缩,密度和温度逐渐升高,在星云中心的地方形成了原始的太阳。太阳形成之后周围的残余物质在太阳赤道方向上形成了星云盘。
星云盘的样子就像现在的土星环。星云盘中的物质在围绕着太阳旋转的同时相互之间会发生碰撞,逐渐形成了几厘米大小的颗粒。这些颗粒被科学家们叫作“星子”。星子和星子之间又相互吸引碰撞,聚合成更大的星子。最终原始的星子质量大到是自己变成一个球体。行星就形成了。
科学家推测,在太阳系形成之初,太阳系中可能有上百个原始的行星。这些行星的运行轨道很不稳定,质量上大约是地球质量的十分之一左右的原始行星叫作“忒伊亚”的,和原始地球撞上了。由于碰撞的角度刚刚好,地球不但避免了被撞碎的命运,而且质量也大大增加了。
忒伊亚星球的大部分物质留在了地球上。这让地球有足够的质量可以维持空气和的存在,为生命的产生创造了有利的条件。而撞击产生的碎片则重新聚合形成了月球。至此,原始地球就基本上形成了。
地球命名
地球的英文名Earth源自中古英语,其历史可追溯到古英语(时常作“eorðe”),在日耳曼语族诸语中都有同源词,拉丁文称之为“Terra”,为古罗马神话中大地女神忒亚之名。
中文“地球”一词最早出现于明朝的西学东渐时期,最早引入该词的是意大利传教士利玛窦(Matteo Ricci,1552-1610),他在《坤舆万国全图》中使用了该词。
清朝后期,西方近代科学引入中国,地圆说逐渐为中国人所接受,“地球”一词(亦作“地毬”)被广泛使用,申报在创刊首月即登载《地球说》一文。
幼儿常识:地球是怎么形成的
是宇宙爆炸产生的地球,至于宇宙爆炸是怎么回事,那就更深奥了,真心在帮你期待采纳,
大班科学教案《地震来了怎么办》
活动目标
1、初步了解地震形成的原理,懂得自救常识。
2、提高幼儿自我保护和应对地震突发事件的自救能力。
3、学会关心和关爱他人,体验人与人之间的真情。
活动准备
木偶架,布袋木偶若干,地球仪,熟鸭蛋,泡沫板,塑料罐,乒乓球等。
活动过程
一、观看木偶表演,探讨应对地震突发事件的正确方法。
以 “可可木偶剧团”演出引入,引导幼儿探讨正确应对地震突发事件发生的方法。
木偶情境表演:一只小鸭唱着歌儿高高兴兴地往“可可木偶剧团”走去,快到剧团的时候,突然发生地震,木偶剧团的房子顷刻倒塌,房子里有许多小鸭的好伙伴,对突如其来的地震,小动物有着不同的反应,根据小动物的不同反应引导幼儿讨论:
情境一:小鸭情急下想冲进房子救它的好伙伴。
师:地震发生时,小鸭能不能往里面跑?为什么?
情境二:被困的小狗慌乱中想跳楼逃生。
师:地震时被困在楼上怎么办?能不能从楼上往下跳?
情境三:小熊猫赶紧躲到牢固的柜子边。
师:小熊猫躲在柜子边对不对?躲在什么地方比较安全?
情境四:小羊困在坍塌的房子里,大喊“救命啊,我要妈妈,我要死了……”,到后面声音越来越小,最后昏倒。
师:被困时大喊大叫、又哭又闹会怎么样?
情境五:小鸡间隔地吹响身上戴的口哨。
师:被困时怎样向外界发出求救信号?
二、实验演示,帮助幼儿了解地震的形成
1、出示地球仪,引导幼儿观察地球仪,知道我们人类的家——地球,地震就是地球表面的震动。
2、了解地球的结构。出示切开的熟鸭蛋,用鸭蛋蛋壳、蛋白、蛋黄比拟地球的结构,帮助幼儿了解地球的基本结构:地壳、地幔、地核。
3、了解地震产生的原理。用泡沫板演示岩层在力的作用下变形到断裂发出“嘣”声音,让幼儿感受地震的发生。
三、观看地震短片和活动操作,学会正确的疏散方法
1、观看5、12地震短片。
师:地震发生时房子会怎么样?先做什么?心里会有什么感受?他们是怎么疏散的?
2、结合幼儿园地震疏散演练情境,说说以后避震演练应注意什么?鼓励幼儿相互讨论后勇敢地表达自己的观点。
3、借助实验操作,体验争先恐后逃生和有序疏散的不同后果
操作一:教师将四个乒乓球用线扎住放进一个开着小口的塑料罐里,线的一头拉出灌口,请四个小朋友分别拉住一个乒乓球同时往外拉,观察其结果(全部挤不出来或部分挤不出来)
操作二:同一实验,请幼儿两两有序将乒乓球拉出,观察其结果(两个两个被迅速被拉出来)讨论:如何将塑料罐里的乒乓球在最短的时间里有序地拉出,从而引伸到地震来临时如何在老师的组织下有序地逃出。
小结:通过短片和实验,小朋友懂得了什么道理,如:为什么会地震,地震有什么危害,地震发生后疏散应注意什么问题?
四、联系5.12汶川地震事件,引导幼儿感受人与人之间的爱。
1、师:汶川地震发生后,那里的人们失去了家园,失去了亲人,我们应该怎样帮助他们?
幼儿讨论:怎样帮助灾区小朋友,奉献我们的一份爱心。
2、以一首《让世界充满爱》让幼儿畅想心中的情感。全体幼儿携起手来,人偶同台表演《让世界充满爱》。
活动延伸
观看去年5.12地震发生后幼儿园老师和小朋友献爱心活动照片、小朋友绘制的百米长卷“我们与灾区小朋友心连心”。
教研组评析
我园已经建立了一套完整的安全教育体系,幼儿有了一定的安全防范意识,为了帮助幼儿了解和掌握地震灾害后的自救方法,何碧玲老师采用情境化、直观化教学模式,把抽象的道理融汇于木偶故事情境之中,通过多形式的探索,获得自救知识和能力,体验相互关爱、相互帮助,一方有难、八方支援的人间真情。
一、情境化教学
活动采用木偶情境剧形式,模拟地震发生情形,将地震发生时应注意的几个问题,淋漓尽致地展现给幼儿,克服枯燥的说教形式,让幼儿犹如身临其境,亲身感受和体验地震来临时的情境,易于被幼儿理解和接受。
二、直观化教学
将抽象的知识演绎成幼儿易于接受的形式。为了帮助幼儿了解地震的形成,活动通过观察演示煮熟鸭蛋的三层结构,让幼儿比较直观地感受地球的地壳、地幔、地核等三层结构;逐层剥开鸭蛋,加深了解地球内部结构;将泡沫板叠加并加力至变形,比喻地球岩层的运动和地震发生的情境,通俗易懂,有效地帮助幼儿理解岩层之间、板块之间的挤压。
三、重视内心世界情感和态度的体验
通过多种教学手段,引导幼儿感受地震的情境,体验地震发生的内心世界,感受人与人之间爱的呼唤、爱的传递,爱的赞歌。