安卓开发网络爬虫源码(安卓 爬虫)
本文目录一览:
- 1、有人有简单爬虫源码可以学习吗
- 2、网络爬虫源代码
- 3、跪求一份java网络爬虫的源代码急用!!
- 4、基于WebCollector开发的爬虫能够在android上运行吗
- 5、求网络视频爬虫的程序源代码,用java开发的
有人有简单爬虫源码可以学习吗
爬虫学习之一个简单的网络爬虫
概述
这是一个网络爬虫学习的技术分享安卓开发网络爬虫源码,主要通过一些实际的案例对爬虫的原理进行分析,达到对爬虫有个基本的认识,并且能够根据自己的需要爬到想要的数据。有了数据后可以做数据分析或者通过其安卓开发网络爬虫源码他方式重新结构化展示。
什么是网络爬虫
网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。via 百度百科网络爬虫
网络蜘蛛(Web spider)也叫网络爬虫(Web crawler)[1],蚂蚁(ant),自动检索工具(automatic indexer),或者(在FOAF软件概念中)网络疾走(WEB scutter),是一种“自动化浏览网络”的程序,或者说是一种网络机器人。它们被广泛用于互联网搜索引擎或其他类似网站,以获取或更新这些网站的内容和检索方式。它们可以自动采集所有其能够访问到的页面内容,以供搜索引擎做进一步处理(分检整理下载的页面),而使得用户能更快的检索到他们需要的信息。via 维基百科网络蜘蛛
以上是百度百科和维基百科对网络爬虫的定义,简单来说爬虫就是抓取目标网站内容的工具,一般是根据定义的行为自动进行抓取,更智能的爬虫会自动分析目标网站结构类似与搜索引擎的爬虫,我们这里只讨论基本的爬虫原理。
###爬虫工作原理
网络爬虫框架主要由控制器、解析器和索引库三大部分组成,而爬虫工作原理主要是解析器这个环节,解析器的主要工作是下载网页,进行页面的处理,主要是将一些JS脚本标签、CSS代码内容、空格字符、HTML标签等内容处理掉,爬虫的基本工作是由解析器完成。所以解析器的具体流程是:
入口访问-下载内容-分析结构-提取内容
分析爬虫目标结构
这里我们通过分析一个网站[落网:] 对网站内容进行提取来进一步了解!
第一步 确定目的
抓取目标网站的某一期所有音乐
第二步 分析页面结构
访问落网的某一期刊,通过Chrome的开发者模式查看播放列表中的歌曲,右侧用红色框线圈出来的是一些需要特别注意的语义结构,见下图所示:
以上红色框线圈出的地方主要有歌曲名称,歌曲的编号等,这里并没有看到歌曲的实际文件地址,所以我们继续查看,点击某一个歌曲就会立即在浏览器中播放,这时我们可以看到在Chrome的开发者模式的Network中看到实际请求的播放文件,如下图所示:
根据以上分析我们可以得到播放清单的位置和音乐文件的路径,接下来我们通过Python来实现这个目的。
实现爬虫
Python环境安装请自行Google
主要依赖第三方库
Requests() 用来发起请求
BeautifulSoup(bs4) 用来解析HTML结构并提取内容
faker()用来模拟请求UA(User-Agent)
主要思路是分成两部分,第一部分用来发起请求分析出播放列表然后丢到队列中,第二部分在队列中逐条下载文件到本地,一般分析列表速度更快,下载速度比较慢可以借助多线程同时进行下载。
主要代码如下:
#-*- coding: utf-8 -*-'''by sudo rm -rf '''import osimport requestsfrom bs4 import BeautifulSoupimport randomfrom faker import Factoryimport Queueimport threadingfake = Factory.create()luoo_site = ''luoo_site_mp3 = ''proxy_ips = [ '27.15.236.236' ] # 替换自己的代理IPheaders = { 'Connection': 'keep-alive', 'User-Agent': fake.user_agent() }def random_proxies(): ip_index = random.randint(0, len(proxy_ips)-1) res = { 'http': proxy_ips[ip_index] } return resdef fix_characters(s): for c in ['', '', ':', '"', '/', '\\\\', '|', '?', '*']: s = s.replace(c, '') return sclass LuooSpider(threading.Thread): def __init__(self, url, vols, queue=None): threading.Thread.__init__(self) print '[luoo spider]' print '=' * 20 self.url = url self.queue = queue self.vol = '1' self.vols = vols def run(self): for vol in self.vols: self.spider(vol) print '\\ncrawl end\\n\\n' def spider(self, vol): url = luoo_site + vol print 'crawling: ' + url + '\\n' res = requests.get(url, proxies=random_proxies()) soup = BeautifulSoup(res.content, 'html.parser') title = soup.find('span', attrs={'class': 'vol-title'}).text cover = soup.find('img', attrs={'class': 'vol-cover'})['src'] desc = soup.find('div', attrs={'class': 'vol-desc'}) track_names = soup.find_all('a', attrs={'class': 'trackname'}) track_count = len(track_names) tracks = [] for track in track_names: _id = str(int(track.text[:2])) if (int(vol) 12) else track.text[:2] # 12期前的音乐编号1~9是1位(如:1~9),之后的都是2位 1~9会在左边垫0(如:01~09) _name = fix_characters(track.text[4:]) tracks.append({'id': _id, 'name': _name}) phases = { 'phase': vol, # 期刊编号 'title': title, # 期刊标题 'cover': cover, # 期刊封面 'desc': desc, # 期刊描述 'track_count': track_count, # 节目数 'tracks': tracks # 节目清单(节目编号,节目名称) } self.queue.put(phases)class LuooDownloader(threading.Thread): def __init__(self, url, dist, queue=None): threading.Thread.__init__(self) self.url = url self.queue = queue self.dist = dist self.__counter = 0 def run(self): while True: if self.queue.qsize() = 0: pass else: phases = self.queue.get() self.download(phases) def download(self, phases): for track in phases['tracks']: file_url = self.url % (phases['phase'], track['id']) local_file_dict = '%s/%s' % (self.dist, phases['phase']) if not os.path.exists(local_file_dict): os.makedirs(local_file_dict) local_file = '%s/%s.%s.mp3' % (local_file_dict, track['id'], track['name']) if not os.path.isfile(local_file): print 'downloading: ' + track['name'] res = requests.get(file_url, proxies=random_proxies(), headers=headers) with open(local_file, 'wb') as f: f.write(res.content) f.close() print 'done.\\n' else: print 'break: ' + track['name']if __name__ == '__main__': spider_queue = Queue.Queue() luoo = LuooSpider(luoo_site, vols=['680', '721', '725', '720'],queue=spider_queue) luoo.setDaemon(True) luoo.start() downloader_count = 5 for i in range(downloader_count): luoo_download = LuooDownloader(luoo_site_mp3, 'D:/luoo', queue=spider_queue) luoo_download.setDaemon(True) luoo_download.start()
以上代码执行后结果如下图所示
Github地址:
总结
通过本文我们基本了解了网络爬虫的知识,对网络爬虫工作原理认识的同时我们实现了一个真实的案例场景,这里主要是使用一些基础的第三方Python库来帮助我们实现爬虫,基本上演示了网络爬虫框架中基本的核心概念。通常工作中我们会使用一些比较优秀的爬虫框架来快速的实现需求,比如 scrapy框架,接下来我会通过使用Scrapy这类爬虫框架来实现一个新的爬虫来加深对网络爬虫的理解!
网络爬虫源代码
安卓开发网络爬虫源码你这个要求必须定制安卓开发网络爬虫源码,不可能有直接能用的东西
跪求一份java网络爬虫的源代码急用!!
希望能帮到你 . . . 这个可以解决你的问题 但是没有样式的.只是爬了源代码
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileOutputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.URL;
public class WebPageSource {
public static void main(String args[]){
URL url;
int responsecode;
HttpURLConnection urlConnection;
BufferedReader reader;
BufferedWriter writer;
String line;
try{
//生成一个URL对象,要获取源代码的网页地址为:
url=new URL("");
//打开URL
urlConnection = (HttpURLConnection)url.openConnection();
//获取服务器响应代码
responsecode=urlConnection.getResponseCode();
if(responsecode==200){
//得到输入流,即获得了网页的内容
reader=new BufferedReader(new InputStreamReader(urlConnection.getInputStream(),"GBK"));
writer = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(new File("d://test.txt"))));
while((line=reader.readLine())!=null){
writer.write(line);
writer.newLine();
}
}
else{
System.out.println("获取不到网页的源码,服务器响应代码为:"+responsecode);
}
}
catch(Exception e){
System.out.println("获取不到网页的源码,出现异常:"+e);
}
}
}
基于WebCollector开发的爬虫能够在android上运行吗
有些人问,开发网络爬虫应该选择Nutch、Crawler4j、WebMagic、scrapy、WebCollector还是其他的?这里按照我的经验随便扯淡一下:
上面说的爬虫,基本可以分3类:
1.分布式爬虫:Nutch
2.JAVA单机爬虫:Crawler4j、WebMagic、WebCollector
3. 非JAVA单机爬虫:scrapy
第一类:分布式爬虫
爬虫使用分布式,主要是解决两个问题:
1)海量URL管理
2)网速
现在比较流行的分布式爬虫,是Apache的Nutch。但是对于大多数用户来说,Nutch是这几类爬虫里,最不好的选择,理由如下:
1)Nutch是为搜索引擎设计的爬虫,大多数用户是需要一个做精准数据爬取(精抽取)的爬虫。Nutch运行的一套流程里,有三分之二是为了搜索引擎而设计的。对精抽取没有太大的意义。也就是说,用Nutch做数据抽取,会浪费很多的时间在不必要的计算上。而且如果你试图通过对Nutch进行二次开发,来使得它适用于精抽取的业务,基本上就要破坏Nutch的框架,把Nutch改的面目全非,有修改Nutch的能力,真的不如自己重新写一个分布式爬虫框架了。
2)Nutch依赖hadoop运行,hadoop本身会消耗很多的时间。如果集群机器数量较少,爬取速度反而不如单机爬虫快。
3)Nutch虽然有一套插件机制,而且作为亮点宣传。可以看到一些开源的Nutch插件,提供精抽取的功能。但是开发过Nutch插件的人都知道,Nutch的插件系统有多蹩脚。利用反射的机制来加载和调用插件,使得程序的编写和调试都变得异常困难,更别说在上面开发一套复杂的精抽取系统了。而且Nutch并没有为精抽取提供相应的插件挂载点。Nutch的插件有只有五六个挂载点,而这五六个挂载点都是为了搜索引擎服务的,并没有为精抽取提供挂载点。大多数Nutch的精抽取插件,都是挂载在“页面解析”(parser)这个挂载点的,这个挂载点其实是为了解析链接(为后续爬取提供URL),以及为搜索引擎提供一些易抽取的网页信息(网页的meta信息、text文本)。
4)用Nutch进行爬虫的二次开发,爬虫的编写和调试所需的时间,往往是单机爬虫所需的十倍时间不止。了解Nutch源码的学习成本很高,何况是要让一个团队的人都读懂Nutch源码。调试过程中会出现除程序本身之外的各种问题(hadoop的问题、hbase的问题)。
5)很多人说Nutch2有gora,可以持久化数据到avro文件、hbase、mysql等。很多人其实理解错了,这里说的持久化数据,是指将URL信息(URL管理所需要的数据)存放到avro、hbase、mysql。并不是你要抽取的结构化数据。其实对大多数人来说,URL信息存在哪里无所谓。
6)Nutch2的版本目前并不适合开发。官方现在稳定的Nutch版本是nutch2.2.1,但是这个版本绑定了gora-0.3。如果想用hbase配合nutch(大多数人用nutch2就是为了用hbase),只能使用0.90版本左右的hbase,相应的就要将hadoop版本降到hadoop 0.2左右。而且nutch2的官方教程比较有误导作用,Nutch2的教程有两个,分别是Nutch1.x和Nutch2.x,这个Nutch2.x官网上写的是可以支持到hbase 0.94。但是实际上,这个Nutch2.x的意思是Nutch2.3之前、Nutch2.2.1之后的一个版本,这个版本在官方的SVN中不断更新。而且非常不稳定(一直在修改)。
所以,如果你不是要做搜索引擎,尽量不要选择Nutch作为爬虫。有些团队就喜欢跟风,非要选择Nutch来开发精抽取的爬虫,其实是冲着Nutch的名气(Nutch作者是Doug Cutting),当然最后的结果往往是项目延期完成。
如果你是要做搜索引擎,Nutch1.x是一个非常好的选择。Nutch1.x和solr或者es配合,就可以构成一套非常强大的搜索引擎了。如果非要用Nutch2的话,建议等到Nutch2.3发布再看。目前的Nutch2是一个非常不稳定的版本。
求网络视频爬虫的程序源代码,用java开发的
apache上有个Lucence项目,是开源的搜索引擎。
你可以下载一份源代码。
中国还有一个中文网站,还有像Lucence In Action 这本书到处都可以下载
估计上就有