光伏发电产生振荡原因(光伏发电波动)
本文目录一览:
- 1、发电机的振荡与失步是怎么回事
- 2、什么是电力系统振荡?振荡产生的原因,有什么危害
- 3、光伏并网点 谐波电流
- 4、影响太阳能光伏发电的主要因素有哪些
- 5、光伏发电原理
- 6、电力系统的振荡是怎么回事?
发电机的振荡与失步是怎么回事
当负载突然变化时,由于转子有惯性,转子功角不能立即稳定在新的数值,而是在新的稳定值左右要经过若干次摆动,这种现象称为同步发电机的振荡。
对于步进电机而言,对绕组的通电频率有一定的要求。如果通电频率过高,超过步进电机的最大步进速度,则将产生失步现象。另外,在同步电机中,当电机负载转矩大于电机所能提供的转矩时,电机转速跟不上电机的同步速,也会造成失步现象。
扩展资料
振荡有两种类型:一种是振荡的幅度越来越小,功角的摆动逐渐衰减,最后稳定在某一新的功角下,仍以同步转速稳定运行,称为同步振荡;另一种是振荡的幅度越来越大,功角不断增大,直至脱出稳定范围,使发电机失步,发电机进入异步运行,称为非同步振荡。
发电机失步保护反映发电机机端测量阻抗的变化轨迹,能可靠躲过系统短路和稳定振荡,并能在失步摇摆过程中区分加速失步和减速失步。
参考资料来源:百度百科-失步保护
参考资料来源:百度百科-失步
什么是电力系统振荡?振荡产生的原因,有什么危害
一、电力系统中的电磁参量(电流、电压、功率、磁链等)的振幅和机械参量(功角、转速等)的大小随时间发生等幅、衰减或发散的周期性变化的现象。
二、系统振荡的五大原因:
1、输电线路输送功率超过极限值造成静态稳定破坏;
2、电网发生短路故障,切除大容量的发电、输电或变电设备,负荷瞬间发生较大突变等造成电力系统暂态稳定破坏;
3、环状系统(或并列双回线)突然开环,使两部分系统联系阻抗突然增大,引启动稳定破坏而失去同步;
4、大容量机组跳闸或失磁,使系统联络线负荷增大或使系统电压严重下降,造成联络线稳定极限降低,易引起稳定破坏;
5、电源间非同步合闸未能拖入同步。
三、发电机将发生不正常的、有节奏的轰鸣声;强行励磁一般会动作;变压器由于电压的摆动,铁芯也会发生不正常的、有节奏的轰鸣声。
扩展资料:
保护装置及原理:
1、保护装置
流电压互感器、高绝缘强度出口中间继电器、高可靠开关电源模块等部件组成。微机保护装置主要作为110KV及以下电压等级的发电厂、变电站、配电站等,也可作为部分70V-220V之间电压等级中系统的电压电流的保护及测控。
2、原理
电力系统微机保护装置的数字核心一般由CPU、存储器、定时器/计数器、Watchdog等组成。目前数字核心的主流为嵌入式微控制器(MCU),即通常所说的单片机。
输入输出通道包括模拟量输入通道(模拟量输入变换回路(将CT、PT所测量的量转换成更低的适合内部A/D转换的电压量,±2.5V、±5V或±10V)、低通滤波器及采样、A/D转换)和数字量输入输出通道(人机接口和各种告警信号、跳闸信号及电度脉冲等)。
参考资料来源:百度百科——电力系统振荡
光伏并网点 谐波电流
电力电子技术光伏发电产生振荡原因的快速发展极大地促进了光伏并网的大规模开发利用光伏发电产生振荡原因,以光伏为代表的高比例新能源并网成为未来能源互联网发展的趋势。然而,光伏出力具有强烈的随机性、间歇性,其采用非线性电力电子装置作为并网接口,将给电网带来复杂的谐波和间谐波问题。间谐波作为非整数次工频分量,具有频谱复杂且时变的特点,传统的谐波分析方法较难适用于间谐波问题的分
析,尤其是次同步频率段的间谐波分量较大时,可能与邻近发电机轴系机械振荡相互作用,诱发次同步振荡问题,严重危及电力系统的安全稳定运行。因此,需建立光伏并网系统的间谐波分析模型,对间谐波产生机理和特性进行分析,便于抑制间谐波对系统的影响。
不同工作频率子系统互联的非同步耦合调制行为是产生间谐波的主要原因。分析间谐波的方法主要有时域信号的离散傅里叶分析和频域数学模型。典型的交直交换流器及直流输电系统中,由于具有两个不同频率的系统相互调制作用,因此会产生间谐波。负荷的波动性,也会产生间谐波问题。基于线性化的方法推导感应电动机带波动性负荷时的定子间谐波电流表达式,并分析间谐波幅值与负荷波动频率、负荷大小的关系。随着可再生能源发电的随机波动性增大和新型电力电子装置间不同频率系统间相互耦合作用加强,现代电力系统的间谐波产生和传播机理变得更为复杂,如直驱型永磁同步风力发电机和双馈式风力发电机的间谐波问题。光伏并网系统产生间谐波的主要原因有:一是光照的随机变化将导致光伏输出的直流电压随机波动,通过逆变器交直流侧相互作用,在交流侧产生复杂的间谐波分量;二是最大功率点跟踪(maximum power point tracking,MPPT)控制不断调整逆变器直流电压指令,以获取最大功率输出,从而导致逆变器直流侧电压波动,在交流侧产生间谐波分量。常见的MPPT策略有扰动法和电导增量法,两者输出均具有扰动特征,因此下文统一称为扰动式MPPT。在确定的扰动步长和扰动周期作用下,扰动式MPPT输出将呈现三点周期性振荡,该模式将会在并网系统中产生明显的间谐波分量。通过实验测量的方法研究不同类型光伏逆变器的间谐波电流发射特性,并指出MPPT是造成光伏并网系统存在间谐波的原因。采用IEC推荐的间谐波子组算法评估光伏逆变器在不同输出功率下,由MPPT导致的特征间谐波电流。进一步以扰动观察法为例,对MPPT引起的光伏间谐波进行仿真研究,给出相应的抑制措施。然而,上述研究成果均以实验测试或仿真分析的手段展开,能定性得出光伏间谐波的分布规律和影响因素,无法揭示其产生的内在机理和具体量值大小。因此,通过解析计算MPPT导致的光伏并网系统间谐波,深入分析间谐波的产生机理和发射特性具有重要的理论价值。
影响太阳能光伏发电的主要因素有哪些
影响太阳能光伏发电光伏发电产生振荡原因的主要因素有光伏发电产生振荡原因:
1.太阳能资源
在光伏电站实际装机容量一定的情况下光伏发电产生振荡原因,光伏系统的发电量是由太阳的辐射强度决定的光伏发电产生振荡原因,太阳辐射量与发电量呈正相关关系。太阳的辐射强度、光谱特性是随着气象条件而改变的。
2.组件安装方式
同一地区不同安装角度的倾斜面辐射量不一样光伏发电产生振荡原因,倾斜面辐射量可通过调整电池板倾角(支架采用固定可调式)或加装跟踪设备(支架采用跟踪式)来增加。
3.逆变器容量配比
逆变器容量配比指逆变器的额定功率与所带光伏组件容量的比例。
由于光伏组件的发电量传送到逆变器,中间会有很多环节造成折减,且逆变器、箱变等设备大部分时间是没有办法达到满负荷运转的,因此,光伏组件容量应略大于逆变器额定容量。根据经验,在太阳能资源较好的地区,光伏组件:逆变器=1.2:1是一个最佳的设计比例。
4.组件串并联匹配
组件串联会由于组件的电流差异造成电流损失,组串并联会由于组串的电压差异造成电压损失。
CNCA/CTS00X-2014《并网光伏电站性能检测与质量评估技术规范》(征求意见稿)中:要求组件串联失配损失最高不应超过2%。
5.组件遮挡
组件遮挡包括灰尘遮挡、积雪遮挡、杂草、树木、电池板及其他建筑物等遮挡,遮挡会降低组件接收到的辐射量,影响组件散热,从而引起组件输出功率下降,还有可能导致热斑。
6.组件温度特性
随着晶体硅电池温度的增加,开路电压减少,在20-100℃范围,大约每升高1℃每片电池的电压减少2mV;而电流随温度的增加略有上升。总的来说,温度升高太阳电池的功率下降,典型功率温度系数为-0.35%/℃,即电池温度每升高1℃,则功率减少0.35%。
7.组件功率衰减
组件功率的衰减是指随着光照时间的增长,组件输出功率逐渐下降的现象。组件衰减与组件本身的特性有关。其衰减现象可大致分为三类:破坏性因素导致的组件功率骤然衰减;组件初始的光致衰减;组件的老化衰减。
CNCA/CTS00X-2014《并网光伏电站性能检测与质量评估技术规范》多晶硅组件1年内衰降率不超过2.5%,2年内衰降率不超过3.2%;单晶硅组件1年内衰降不应超过3.0%,2年内衰降不应超过4.2%。
8.设备运行稳定性
光伏发电系统中设备故障停机直接影响电站的发电量,如逆变器以上的交流设备若发生故障停机,那么造成的损失电量将是巨大的。另外,设备虽然在运行但是不在最佳性能状态运行,也会造成电量损失。
9.例行维护
例行维护检修是电站必须进行的工作,安排好检修计划可以减少损失电量。电站应结合自身情况,合理制定检修时间,同时应提升检修的工作效率,减少电站因正常维护检修而损失的发电量。
10.电网消纳
由于电网消纳的原因,一些地区电网调度要求光伏电站限功率运行。
光伏发电原理
原理:
光伏发电的主要原理是半导体的光电效应。光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收的能量足够大,能克服金属内部引力做功,离开金属表面逃逸出来,成为光电子。
硅原子有4个外层电子,如果在纯硅中掺入有5个外层电子的原子如磷原子,就成为N型半导体;若在纯硅中掺入有3个外层电子的原子如硼原子,形成P型半导体。
当P型和N型结合在一起时,接触面就会形成电势差,成为太阳能电池。当太阳光照射到P-N结后,空穴由P极区往N极区移动,电子由N极区向P极区移动,形成电流。
扩展资料:
优点:
①无枯竭危险;
②安全可靠,无噪声,无污染排放外,绝对干净(无公害);
③不受资源分布地域的限制,可利用建筑屋面的优势;例如,无电地区,以及地形复杂地区;
④无需消耗燃料和架设输电线路即可就地发电供电;
⑤能源质量高;
⑥使用者从感情上容易接受;
⑦建设周期短,获取能源花费的时间短。
缺点:
①照射的能量分布密度小,即要占用巨大面积;
②获得的能源同四季、昼夜及阴晴等气象条件有关。
③目前相对于火力发电,发电机会成本高。
④光伏板制造过程中不环保。
参考资料:百度百科----光伏发电
电力系统的振荡是怎么回事?
低频振荡产生的原因是由于电力系统的负阻尼效应,常出现在弱联系、远距离、重负荷输电线路上,在采用快速、高放大倍数励磁系统的条件下更容易发生。系统缺乏阻尼甚至阻尼为负,对应发电机转子间的相对摇摆,表现在输电线路上就出现功率波动,
由系统缺乏阻尼或系统负阻尼引起的输电线路上的功率波动频率一般在0.1—2.0
hz之间,通常称之为低频振荡(又称功率振荡,机电振荡)。一般来说,电力系统振荡模式可分为两种类型:地区振荡模式和区域振荡模式,若系统低频振荡频率很低(0.1~0.5
hz),则一般认为属互联系统区域间振荡模式。而如果振荡较高,在1
hz以上,则认为是本地或区域问机组问的振荡模式。对于地区振荡模式,振荡频率较高,参与的机组较少,因而只要在少数强相关机组上增加阻尼,就能显著地增加振荡模式的阻尼。对于区域振荡模式,振荡频率较低,参与的机组较多,因而只有在多数参与机组上增加阻尼,才能显著地增加振荡模式的阻尼。显然,抑制区域振荡模式的低频振荡要比抑制地区振荡模式的低频振荡更加复杂和困难,所以,系统运行中更容易发生区域振荡模式的低频振荡。