促甲状腺素释放激素化学结构图片(促甲状腺激素成分组成)
本文目录一览:
图1为甲状腺激素的结构简式,图2为人和高等动物体内存在的甲状腺激素的分级调节示意图.甲、乙、丙表示不
(1)据图分析:甲表示垂体,乙表示甲状腺.
(2)双缩脲试剂是检测肽键的专用试剂,所以不含肽键的化合物不能使其变紫色;a表示促甲状腺激素,c表示甲状腺激素,口服后进入消化系统会被体内的蛋白酶水解,所以不能口服;甲状腺激素的靶细胞是几乎全是的细胞.
(3)①甲状腺激素的分泌具有负反馈调节机制,若甲状腺激素减少,如果垂体正常,促甲状腺激素应该偏高,而促甲状腺激素释放激素正常,则一定是垂体分泌分泌促甲状腺激素减少.
②注射激素c,即甲状腺激素,而促甲状腺激素释放激素和促甲状腺激素正常,则说明是甲状腺分泌不足造成甲状腺激素减少.
故答案为:
(1)垂体 甲状腺
(2)c a、b c
(3)①a ②c
求甲状腺激素的结构式。
英文名称:thyroxin(e)
分子式:C15H11O4I4N
相对分子质量:776.93。
结构式
物理性质:白色针状晶体。无臭。无味。遇光变质。熔点231-233℃(分解)。不溶于水和乙醇等普通有机溶剂。溶于含有无机酸或碱的乙醇,也溶于氢氧化碱和碳酸碱溶液。在其酸性乙醇溶液中加入亚硝酸钠,加热即呈黄色,再加过量氨水即变为粉红色。
化学本质:甲状腺素即为T4,为四碘甲状腺原氨酸。
作用:具有促进一般组织代谢,提高神经兴奋性和身体发育作用。用以治疗甲状腺机能减退,粘液性水肿和克汀病等。
制取:可由牛、羊、猪等的甲状腺中提取,或由人工合成。
[编辑本段]基本性质
甲状腺激素即四碘甲状腺原氨酸。有DL,L,D型。L型为白色结晶。235~236℃分解。旋光度-4.4°(3%于0.13mol/L NaOH于70%乙醇)。D型为结晶,237℃分解;DL型为针状结晶,231~233℃分解。溶于碱溶液,不溶于水、乙醇和乙醚。未证实其有天然游离态存在,可能为甲状腺球蛋白分裂产品。可从动物甲状腺中提取。可由3,5-二碘-L-酪氨酸为原料制取。L型活性强,D型活性较小。有促进细胞代谢、增加氧消耗、刺激组织生长、成熟和分化功能。产品可作甲状腺激素替代药或作生化试剂。L-甲状腺素的生理活性是-外消旋体的2倍,D-甲状腺素生理活性很低。因此定量测定人血清FT4对甲状腺疾病的诊断,甲状腺的病理、生理研究有重要意义。采用联结T4抗体的固相物质,利用25I-FT4与抗血清的放射免疫分析法可简便、快速测定血浆中FT4的含量。
甲状腺素的形成经过合成、贮存、碘化、重吸收、分解和释放六个过程:1. 滤泡上皮细胞从血液中摄取氨基酸,在粗面内质网合成甲状腺球蛋白的前体,继而在高尔基复合体加糖并浓缩形成分泌颗粒,再以胞吐方式排放到滤泡腔内贮存。2. 滤泡上皮细胞能从血液中摄取I-,I-经过过氧化物酶的作用而活化。3. 活化后的I-进入滤泡腔与甲状腺球蛋白结合,形成碘化的甲状腺球蛋白。4. 滤泡上皮细胞在腺垂体分泌的促甲状腺激素的作用下,胞吞滤泡腔内的碘化甲状腺球蛋白,成为胶质小泡。5. 胶质小泡与溶酶体融合,碘化甲状腺球蛋白被水解酶分解形成大量四碘甲状腺原氨酸(T4)和少量三碘甲状腺原氨酸(T3),即甲状腺素。6. T3和T4于细胞基底部释放入血。
甲状腺激素合成总程序.从食物和水中摄入碘被甲状腺主动浓集,经过氧化酶转变成有机碘,并和在甲状腺滤泡细胞基层细胞表面的胶状质中滤泡内甲状腺球蛋白上的酪氨酸结合.酪氨酸碘化是在1(单碘酪氨酸)或2(二碘酪氨酸)个位置上产生,然后偶联形成活性激素[二碘酪氨酸 二碘酪氨酸→四碘酪氨酸(T4 );二碘酪氨酸 一碘酪氨酸→三碘酪氨酸(T3 )],另一些T3 来 自甲状腺内借I5'脱碘酶T4 外环脱碘产生.甲状腺球蛋白(含有T3 和T4 的糖蛋白)从滤泡被甲状腺细胞吸取成胶滴小粒.
溶酶体中的蛋白酶使球蛋白中的T3 和T4 裂解,结果游离T3 (FT3 )和游离T 4 (FT4 )释放.碘化酪氨酸(单碘酪氨酸和二碘酪氨酸)也从甲状腺球蛋白中同时释放,但只小部分进入血流.经细胞内脱碘酶脱碘,这些碘被甲状腺重新利用.
T 4 和T3 经蛋白分解从甲状腺释放进入血流,与甲状腺激素结合蛋白结合转运.主要甲状腺激素结合蛋白是甲状腺素结合球蛋白(TBG),其对T4 和T3 具 有高亲和力,但结合容量低.TBG正常约占结合激素的75%.其他甲状腺激素结合蛋白---主要是甲状腺素结合前白蛋白,又称转甲状腺蛋白(transthyretin),对T4 有高亲和性,低结合容量,和白蛋白对T4 和T3 有低亲和性,高结合容量---占结合血清甲状腺激素其余部分.约0.03%的总血清T4 和 0.3%的总血清T3 呈游离状态,与结合激素动态平衡.唯有FT4 和FT3 在周围组织起甲状腺激素作用.
垂体甲状腺兴奋激素(TSH),亦称作促甲状腺素,可兴奋甲状腺内滤泡细胞,是影响和控制T3 和T4 形成的整个序列反应所必需的.TSH与滤泡外表面上甲状腺细胞浆膜受体结合,激活腺苷酸环化酶,因此增加了腺苷3':5'-环化磷酸化(cAMP)形成,核苷酸介导TSH细胞内效应.垂体TSH分泌受循环中FT3 ,FT4 和垂体促甲状腺细胞内T4 转换至T3 的负反馈调节控制.T3 是代谢上有活性碘甲腺原氨酸.游离甲状腺激素(T4 和T3 )增加抑制垂体TSH分泌,而T 4 和T3 水平降低导致垂体TSH释放增加.TSH分泌也受TRH影响,这是由下丘脑合成的三个氨基酸肽.TRH释放至下丘脑和垂体之间门脉系统,与垂体前叶促甲状腺细胞上的特异TRH受体结合,引起TSH系列释放.虽然甲状腺激素对TRH合成和释放起作用,但精确的机制仍不清.
约20%循环中T3 由甲状腺产生,其余80%主要来自肝脏,由T4 的外环脱碘(5'D-Ⅰ)转换产生.T4 的内环单脱碘酶[5-脱碘酶(5D-Ⅲ)]同样可发生于肝内和肝外,产生3,3',5'-T3 (反T3 或rT3 ).这些碘甲腺原氨酸代谢活性小,但存在于正常人的血清中和极小量在甲状腺球蛋白内.约99%rT3 是在周围组织T4 内环脱碘产生.在许多情况出现rT3 增加,此时T3 水平降低是因为外环5'D-Ⅰ活性降低(如慢性肝病,肾病,急性和慢性病,饥饿和碳水化合物缺乏).rT3 增高主要是因为外环(5'D-Ⅰ)活性降低,明显减少了rT3 的清除.这些慢性病因此导致活性激素(T3 )产生减少和由于清除减少而rT3 增高.T3 产生降低可能是机体对疾病的适应性反应.
甲状腺激素包括:甲状腺素和三碘甲状腺原氨酸。
作用:维持生长发育 甲状腺激素为人体正常生长发育所必需,其分泌不足或过量都可引起疾病。甲状腺功能不足时,躯体与智力发育均受影响,可致呆小病(克汀病),成人甲状腺功能不全时,则可引起粘液性水肿。
促进代谢 甲状腺激素能促进物质氧化,增加氧耗,提高基础代谢率,使产热增多,而又不能很好利用。甲状腺功能亢进时有怕热、多汗等症状。
神经系统及心血管效应 呆小病患者的中枢神经系统的发育发生障碍。甲状腺功能亢进时出现神经过敏、急躁、震颤、心率加快、心输出量增加等现象。因甲状腺激素可增强心脏对儿茶酚胺的敏感性。
甲状腺激素除影响长骨的生长发育外,还影响脑的发育,婴幼儿甲状腺激素缺乏,将导致身高和智力发育障碍的呆小症
正常情况下,在中枢神经系统的调控下,下丘脑释放促甲状激素释放激素(TRH)调节腺垂体促甲状腺激素(TSH)的分泌,TSH则刺激甲状腺细胞分泌T4和T3;当血液中T4和T3浓度增高后,通过负反馈作用,抑制腺垂体TSH的合成和释放,降低腺垂体对TRH的反应性,使TSH分泌减少,从而使甲状腺激素分泌不至于过高;而当血中T4和T3浓度降低时,对腺垂体负反馈作用减弱。TSH分泌增加,促使T4、T3分泌增加。总之,下丘脑—腺垂体-甲状腺调节环路可维持甲状腺激素分泌的相对恒定。
碘使甲状腺激素的一种重要成分,缺碘会导致体内甲状腺激素合成不足,患地方性甲状腺肿,俗称“大脖子病”,患者会出现呼吸困难等症状,食用海带和加碘盐可以有效预防地方性甲状腺肿的发生。
[编辑本段]药理作用
T3作用快而强,T4作用弱而慢。甲状腺激素在细胞核内与其受体结合,诱导靶基因转录而发挥效应。其作用有维持正常生长发育、促进代谢和产热、提高机体交感-肾上腺系统的反应性等。
[编辑本段]临床应用
主要用于甲状腺功能低下(呆小病或粘液性水肿)的替代疗法;也用于治疗单纯性甲状腺肿,减轻甲亢患者服用抗甲状腺药后的突眼、甲状腺肿大及防止甲状腺功能低下等。
过量可引起甲亢症状、腹泻、呕吐、发热、脉搏快而不规则,甚至有心绞痛、心力衰竭、肌肉震颤或痉挛。
促性腺激素、促甲状腺激素的化学成份
人体各类激素
1.胰岛素
胰岛素是体内唯一降低血糖促甲状腺素释放激素化学结构图片的激素,也是唯一同时促进糖原、脂肪、蛋白质合成的激素.血糖升高时,立即引起胰岛素分泌.其降血糖是多方面作用的结果:
①促进葡萄糖转运入细胞,降低血液中糖含量.
②通过共价修饰使糖原合成酶活性增加,磷酸化酶活性降低,加速糖原合成,抑制糖原分解.
③激活丙酮酸脱氢酶,加快糖的有氧氧化
④通过抑制 PEP羧激酶的合成以及减少糖异生的原料,抑制糖异生.
⑤抑制脂肪组织内的脂肪酶,减少脂肪动员,使组织利用葡萄糖增加
2.胰高血糖素
胰高血糖素是体内主要升高血糖的激素.其升血糖的机制几乎与胰岛素相反:
①抑制糖原合成酶,激活磷酸化酶使糖原分解增加,糖原合成降低.
②减少 2,6-双磷酸果糖的合成,抑制糖酵解,加速糖异生.
③促进 PEP羧激酶的合成,抑制丙酮酸激酶,增强糖异生.
④通过激活脂肪酶,加速脂肪动员,从而间接升血糖.
3.肾上腺素:
肾上腺素是迅速而强有力升高血糖的激素,主要在应激时起作用,对经常性,尤其是进食引起的血糖波动无生理意义.主要是通过加快糖原分解,促进糖异生升高血糖.
4.肾上腺糖皮质醇:
是肾上腺皮质分泌的类固醇激素,主要是糖皮质激素,它能促进肌肉蛋白质分解,增强糖异生,同时抑制肝外组织摄取葡萄糖,从而升高血糖.
5.促甲状腺激素释放激素
促甲状腺激素释放激素(thyrotropin-releasing hormone,TRH)是三肽,其化学结构为: (焦)谷-组-脯-NH2
TRH主要作用于腺垂体促进促甲状腺激素(TSH)释放,血中T4和T3随TSH浓度上升而增加.给人和动物静脉注射TRH(1mg),1-2min内血浆TSH浓度便开始增加,10-20min达高峰,TSH的含量可增加20倍.腺垂体的促甲状腺激素细胞的膜上的TRH受体,与TRH结合后,通过Ca2+介导引起TSH释放,因此IP3-DG系统可能是TRH发挥作用的重要途径.TRH除了刺激腺垂体释放TSH外,也促进催乳互的释放,但TRH是否参与催乳素分泌的生理调节,尚不能肯定.
下丘脑存在大量的TRH神经元,它们主要分布于下丘脑中间基底部,如损毁下丘脑的这个区域则引起TRH分泌减少.TRH神经元合成的TRH通过轴浆运输至轴突末梢贮存,延伸到正中隆起初级毛细血管周围的轴突末梢在适当刺激作用下,释放TRH并进入垂体门脉系统运送到腺垂体,促进TRH释放.另外,在第三脑室周围尤其是底部排列有形如杯状的脑室膜细胞(tanycyte),其形态特点与典型的脑室膜细胞有所不同,其胞体细长,一端面向脑室腔,其边界上无纤毛而有突起,另一端则延伸至正中隆起的毛细血管周围.在这些细胞内含有大量的TRH与GnRH等肽类激素.下丘脑特别是室周核释放的TRH或GnRH进入第三脑室的脑脊液中,可被脑室膜细胞摄入,再转幸福至正中隆起附近释放,然后进入垂体门脉系统.
除了下丘脑有较多的TRH外,在下丘脑以外的中枢神经部位,如大脑和脊髓,也发现有TRH存在,其作用可能与神经信息传递有关.
6.促性腺激素释放激素
促性腺激素释放激素(gonadotropin-releasing hormone,GnRH,LRH)是十肽激素,其化学结构为: (焦)谷-组-色-丝-酪-甘-亮-精-脯-甘-NH2
GnRH促进性腺垂体合成与释放促性腺激素.当机体静脉注射100mgGnRH,10min后血中黄体生成素(LH)与卵泡刺激素(FSH)浓度明显增加,但以LH的增加更为显著.在体外腺垂体组织培养系统中加入GnRH,亦能引起LH与FSH分泌增加,如果先用GnRH抗血清处理后,再给予GnRH,则可减弱或消除GnRH的效应.
下丘脑释放GnRH的特脉冲式释放,因而造成血中LH与FSH浓度也呈现脉冲式波动.从恒河猴垂体门脉血管收集的血样测定GnRH含量,呈现阵发性时高时低的现象,每隔1-2h波动一次.在大鼠,GnRH每隔20-30min释放一次,如果给大鼠注射抗GnRH血清,则血中LH与FSH浓度的脉冲式波动消失,说明血中LH与FSH的脉冲式波动是由下丘脑GnRH脉冲式释放决定的.用青春期前的幼猴实验表明,破坏产生GnRH的弓状核后, 连续滴注外源的GnRH并不能诱发青春期的出现,只有按照内源GnRH所表现的脉冲式频率和幅度滴注GnRH,才能使 血中LH与FSH浓度呈现类似正常的脉冲式波动,从而激发青春期发育.看来,激素呈脉冲式释放对发挥其作用是十分重要的.
腺垂体的促性腺激素细胞的膜上有GnRH受体,GnRH与其受体结合后,可能是通过磷脂酰肌醇信息传递系统导致细胞内Ca2+浓度增加而发挥作用的.
在人的下丘脑,GnRH主要集中在弓状核、内侧视前区与室旁核.除下丘脑外,在脑的其促甲状腺素释放激素化学结构图片他区域如间脑、边缘叶,以及松果体、卵巢、