linux1源码解析(linux10源代码解析)
本文目录一览:
- 1、linux内核源码详解
- 2、linux源码分析
- 3、如何分析linux源代码下的定义的数据结构
- 4、求一段Linux操作系统源代码分析
- 5、如何读懂linux内核源码?
- 6、怎样解读LINUX系统的源代码
linux内核源码详解
Linux的内核源代码可以从很多途径得到。一般来讲,在安装的linux系统下,/usr/src/linux目录下的东西就是内核源代码。
对于源代码的阅读,要想比较顺利,事先最好对源代码的知识背景有一定的了解。对于linux内核源代码来讲,我认为,基本要求是:1、操作系统的基本知识; 2、对C语言比较熟悉,最好要有汇编语言的知识和GNU C对标准C的扩展的知识的了解。
另外在阅读之前,还应该知道Linux内核源代码的整体分布情况。我们知道现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序、网络等组成。看一下Linux内核源代码就可看出,各个目录大致对应了这些方面。Linux内核源代码的组成如下(假设相对于linux目录):
arch 这个子目录包含了此核心源代码所支持的硬件体系结构相关的核心代码。如对于X86平台就是i386。
include 这个目录包括了核心的大多数include文件。另外对于每种支持的体系结构分别有一个子目录。
init 此目录包含核心启动代码。
mm 此目录包含了所有的内存管理代码。与具体硬件体系结构相关的内存管理代码位于arch/-/mm目录下,如对应于X86的就是arch/i386/mm/fault.c 。
drivers 系统中所有的设备驱动都位于此目录中。它又进一步划分成几类设备驱动,每一种也有对应的子目录,如声卡的驱动对应于drivers/sound。
ipc 此目录包含了核心的进程间通讯代码。
modules 此目录包含已建好可动态加载的模块。
fs Linux支持的文件系统代码。不同的文件系统有不同的子目录对应,如ext2文件系统对应的就是ext2子目录。
kernel 主要核心代码。同时与处理器结构相关代码都放在arch/-/kernel目录下。
net 核心的网络部分代码。里面的每个子目录对应于网络的一个方面。
lib 此目录包含了核心的库代码。与处理器结构相关库代码被放在arch/-/lib/目录下。
scripts 此目录包含用于配置核心的脚本文件。
Documentation 此目录是一些文档,起参考作用。
linux源码分析
linux的tcp-ip栈代码的详细分析
1.数据结构(msghdr,sk_buff,socket,sock,proto_ops,proto)
bsd套接字层,操作的对象是socket,数据存放在msghdr这样的数据结构:
创建socket需要传递family,type,protocol三个参数,创建socket其实就是创建一个socket实例,然后创建一个文件描述符结构,并且互相建立一些关联,即建立互相连接的指针,并且初始化这些对文件的写读操作映射到socket的read,write函数上来。
同时初始化socket的操作函数(proto_ops结构),如果传入的type参数是STREAM类型,那么就初始化为SOCKET-ops为inet_stream_ops,如果是DGRAM类型,则SOCKET-ops为inet_dgram_ops。对于inet_stream_ops其实是一个结构体,包含了stream类型的socket操作的一些入口函数,在这些函数里主要做的是对socket进行相关的操作,同时通过调用下面提到的sock中的相关操作完成socket到sock层的传递。比如在inet_stream_ops里有个inet_release的操作,这个操作除了释放socket的类型空间操作外,还通过调用socket连接的sock的close操作,对于stream类型来说,即tcp_close来关闭sock
释放sock。
创建socket同时还创建sock数据空间,初始化sock,初始化过程主要做的事情是初始化三个队列,receive_queue(接收到的数据包sk_buff链表队列),send_queue(需要发送数据包的sk_buff链表队列),backlog_queue(主要用于tcp中三次握手成功的那些数据包,自己猜的),根据family、type参数,初始化sock的操作,比如对于family为inet类型的,type为stream类型的,sock-proto初始化为tcp_prot.其中包括stream类型的协议sock操作对应的入口函数。
在一端对socket进行write的过程中,首先会把要write的字符串缓冲区整理成msghdr的数据结构形式(参见linux内核2.4版源代码分析大全),然后调用sock_sendmsg把msghdr的数据传送至inet层,对于msghdr结构中数据区中的每个数据包,创建sk_buff结构,填充数据,挂至发送队列。一层层往下层协议传递。一下每层协议不再对数据进行拷贝。而是对sk_buff结构进行操作。
如何分析linux源代码下的定义的数据结构
Linux源代码阅读方法 Linux的源代码是很庞大的,如果没有一个好的方法是很难能够有一个比较高的效率的。所以我首先要写的就是我在阅读linux源代码的时候所采用的方法。希望会对大家有所帮助! 首先,我找了几本分析linux源代码的书。有一本关于l...
求一段Linux操作系统源代码分析
Linux内核的配置系统由三个部分组成,分别是:
Makefile:分布在 Linux 内核源代码中的 Makefile,定义 Linux 内核的编译规则;
配置文件(config.in):给用户提供配置选择的功能;
配置工具:包括配置命令解释器(对配置脚本中使用的配置命令进行解释)和配置用户界面(提供基于字符界面、基于 Ncurses 图形界面以及基于 Xwindows 图形界面的用户配置界面,各自对应于 Make config、Make menuconfig 和 make xconfig)。
这些配置工具都是使用脚本语言,如 Tcl/TK、Perl 编写的(也包含一些用 C 编写的代码)。本文并不是对配置系统本身进行分析,而是介绍如何使用配置系统。所以,除非是配置系统的维护者,一般的内核开发者无须了解它们的原理,只需要知道如何编写 Makefile 和配置文件就可以。所以,在本文中,我们只对 Makefile 和配置文件进行讨论。另外,凡是涉及到与具体 CPU 体系结构相关的内容,我们都以 ARM 为例,这样不仅可以将讨论的问题明确化,而且对内容本身不产生影响。
2. Makefile
2.1 Makefile 概述
Makefile 的作用是根据配置的情况,构造出需要编译的源文件列表,然后分别编译,并把目标代码链接到一起,最终形成 Linux 内核二进制文件。
由于 Linux 内核源代码是按照树形结构组织的,所以 Makefile 也被分布在目录树中。Linux 内核中的 Makefile 以及与 Makefile 直接相关的文件有:
Makefile:顶层 Makefile,是整个内核配置、编译的总体控制文件。
.config:内核配置文件,包含由用户选择的配置选项,用来存放内核配置后的结果(如 make config)。
arch/*/Makefile:位于各种 CPU 体系目录下的 Makefile,如 arch/arm/Makefile,是针对特定平台的 Makefile。
各个子目录下的 Makefile:比如 drivers/Makefile,负责所在子目录下源代码的管理。
Rules.make:规则文件,被所有的 Makefile 使用。
用户通过 make config 配置后,产生了 .config。顶层 Makefile 读入 .config 中的配置选择。顶层 Makefile 有两个主要的任务:产生 vmlinux 文件和内核模块(module)。为了达到此目的,顶层 Makefile 递归的进入到内核的各个子目录中,分别调用位于这些子目录中的 Makefile。至于到底进入哪些子目录,取决于内核的配置。在顶层 Makefile 中,有一句:include arch/$(ARCH)/Makefile,包含了特定 CPU 体系结构下的 Makefile,这个 Makefile 中包含了平台相关的信息。
位于各个子目录下的 Makefile 同样也根据 .config 给出的配置信息,构造出当前配置下需要的源文件列表,并在文件的最后有 include $(TOPDIR)/Rules.make。
Rules.make 文件起着非常重要的作用,它定义了所有 Makefile 共用的编译规则。比如,如果需要将本目录下所有的 c 程序编译成汇编代码,需要在 Makefile 中有以下的编译规则:
%.s: %.c
$(CC) $(CFLAGS) -S $ -o $@
有很多子目录下都有同样的要求,就需要在各自的 Makefile 中包含此编译规则,这会比较麻烦。而 Linux 内核中则把此类的编译规则统一放置到 Rules.make 中,并在各自的 Makefile 中包含进了 Rules.make(include Rules.make),这样就避免了在多个 Makefile 中重复同样的规则。对于上面的例子,在 Rules.make 中对应的规则为:
%.s: %.c
$(CC) $(CFLAGS) $(EXTRA_CFLAGS) $(CFLAGS_$(*F)) $(CFLAGS_$@) -S $ -o $@
2.2 Makefile 中的变量
顶层 Makefile 定义并向环境中输出了许多变量,为各个子目录下的 Makefile 传递一些信息。有些变量,比如 SUBDIRS,不仅在顶层 Makefile 中定义并且赋初值,而且在 arch/*/Makefile 还作了扩充。
常用的变量有以下几类:
1) 版本信息
版本信息有:VERSION,PATCHLEVEL, SUBLEVEL, EXTRAVERSION,KERNELRELEASE。版本信息定义了当前内核的版本,比如 VERSION=2,PATCHLEVEL=4,SUBLEVEL=18,EXATAVERSION=-rmk7,它们共同构成内核的发行版本KERNELRELEASE:2.4.18-rmk7
2) CPU 体系结构:ARCH
在顶层 Makefile 的开头,用 ARCH 定义目标 CPU 的体系结构,比如 ARCH:=arm 等。许多子目录的 Makefile 中,要根据 ARCH 的定义选择编译源文件的列表。
3) 路径信息:TOPDIR, SUBDIRS
TOPDIR 定义了 Linux 内核源代码所在的根目录。例如,各个子目录下的 Makefile 通过 $(TOPDIR)/Rules.make 就可以找到 Rules.make 的位置。
SUBDIRS 定义了一个目录列表,在编译内核或模块时,顶层 Makefile 就是根据 SUBDIRS 来决定进入哪些子目录。SUBDIRS 的值取决于内核的配置,在顶层 Makefile 中 SUBDIRS 赋值为 kernel drivers mm fs net ipc lib;根据内核的配置情况,在 arch/*/Makefile 中扩充了 SUBDIRS 的值,参见4)中的例子。
4) 内核组成信息:HEAD, CORE_FILES, NETWORKS, DRIVERS, LIBS
Linux 内核文件 vmlinux 是由以下规则产生的:
vmlinux: $(CONFIGURATION) init/main.o init/version.o linuxsubdirs
$(LD) $(LINKFLAGS) $(HEAD) init/main.o init/version.o
--start-group
$(CORE_FILES)
$(DRIVERS)
$(NETWORKS)
$(LIBS)
--end-group
-o vmlinux
可以看出,vmlinux 是由 HEAD、main.o、version.o、CORE_FILES、DRIVERS、NETWORKS 和 LIBS 组成的。这些变量(如 HEAD)都是用来定义连接生成 vmlinux 的目标文件和库文件列表。其中,HEAD在arch/*/Makefile 中定义,用来确定被最先链接进 vmlinux 的文件列表。比如,对于 ARM 系列的 CPU,HEAD 定义为:
HEAD := arch/arm/kernel/head-$(PROCESSOR).o
arch/arm/kernel/init_task.o
表明 head-$(PROCESSOR).o 和 init_task.o 需要最先被链接到 vmlinux 中。PROCESSOR 为 armv 或 armo,取决于目标 CPU。 CORE_FILES,NETWORK,DRIVERS 和 LIBS 在顶层 Makefile 中定义,并且由 arch/*/Makefile 根据需要进行扩充。 CORE_FILES 对应着内核的核心文件,有 kernel/kernel.o,mm/mm.o,fs/fs.o,ipc/ipc.o,可以看出,这些是组成内核最为重要的文件。同时,arch/arm/Makefile 对 CORE_FILES 进行了扩充:
# arch/arm/Makefile
# If we have a machine-specific directory, then include it in the build.
MACHDIR := arch/arm/mach-$(MACHINE)
ifeq ($(MACHDIR),$(wildcard $(MACHDIR)))
SUBDIRS += $(MACHDIR)
CORE_FILES := $(MACHDIR)/$(MACHINE).o $(CORE_FILES)
endif
HEAD := arch/arm/kernel/head-$(PROCESSOR).o
arch/arm/kernel/init_task.o
SUBDIRS += arch/arm/kernel arch/arm/mm arch/arm/lib arch/arm/nwfpe
CORE_FILES := arch/arm/kernel/kernel.o arch/arm/mm/mm.o $(CORE_FILES)
LIBS := arch/arm/lib/lib.a $(LIBS)
5) 编译信息:CPP, CC, AS, LD, AR,CFLAGS,LINKFLAGS
在 Rules.make 中定义的是编译的通用规则,具体到特定的场合,需要明确给出编译环境,编译环境就是在以上的变量中定义的。针对交叉编译的要求,定义了 CROSS_COMPILE。比如:
CROSS_COMPILE = arm-linux-
CC = $(CROSS_COMPILE)gcc
LD = $(CROSS_COMPILE)ld
......
CROSS_COMPILE 定义了交叉编译器前缀 arm-linux-,表明所有的交叉编译工具都是以 arm-linux- 开头的,所以在各个交叉编译器工具之前,都加入了 $(CROSS_COMPILE),以组成一个完整的交叉编译工具文件名,比如 arm-linux-gcc。
CFLAGS 定义了传递给 C 编译器的参数。
LINKFLAGS 是链接生成 vmlinux 时,由链接器使用的参数。LINKFLAGS 在 arm/*/Makefile 中定义,比如:
# arch/arm/Makefile
LINKFLAGS :=-p -X -T arch/arm/vmlinux.lds
6) 配置变量CONFIG_*
.config 文件中有许多的配置变量等式,用来说明用户配置的结果。例如 CONFIG_MODULES=y 表明用户选择了 Linux 内核的模块功能。
.config 被顶层 Makefile 包含后,就形成许多的配置变量,每个配置变量具有确定的值:y 表示本编译选项对应的内核代码被静态编译进 Linux 内核;m 表示本编译选项对应的内核代码被编译成模块;n 表示不选择此编译选项;如果根本就没有选择,那么配置变量的值为空。
2.3 Rules.make 变量
前面讲过,Rules.make 是编译规则文件,所有的 Makefile 中都会包括 Rules.make。Rules.make 文件定义了许多变量,最为重要是那些编译、链接列表变量。
O_OBJS,L_OBJS,OX_OBJS,LX_OBJS:本目录下需要编译进 Linux 内核 vmlinux 的目标文件列表,其中 OX_OBJS 和 LX_OBJS 中的 "X" 表明目标文件使用了 EXPORT_SYMBOL 输出符号。
M_OBJS,MX_OBJS:本目录下需要被编译成可装载模块的目标文件列表。同样,MX_OBJS 中的 "X" 表明目标文件使用了 EXPORT_SYMBOL 输出符号。
O_TARGET,L_TARGET:每个子目录下都有一个 O_TARGET 或 L_TARGET,Rules.make 首先从源代码编译生成 O_OBJS 和 OX_OBJS 中所有的目标文件,然后使用 $(LD) -r 把它们链接成一个 O_TARGET 或 L_TARGET。O_TARGET 以 .o 结尾,而 L_TARGET 以 .a 结尾。
如何读懂linux内核源码?
Linux的内核源代码可以从很多途径得到。一般来讲,在安装的linux系统下,/usr/src/linux目录下的东西就是内核源代码。
对于源代码的阅读,要想比较顺利,事先最好对源代码的知识背景有一定的了解。对于linux内核源代码来讲,我认为,基本要求是:1、操作系统的基本知识; 2、对C语言比较熟悉,最好要有汇编语言的知识和GNU C对标准C的扩展的知识的了解。
另外在阅读之前,还应该知道Linux内核源代码的整体分布情况。我们知道现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序、网络等组成。看一下Linux内核源代码就可看出,各个目录大致对应了这些方面。Linux内核源代码的组成如下(假设相对于linux目录):
arch 这个子目录包含了此核心源代码所支持的硬件体系结构相关的核心代码。如对于X86平台就是i386。
include 这个目录包括了核心的大多数include文件。另外对于每种支持的体系结构分别有一个子目录。
init 此目录包含核心启动代码。
mm 此目录包含了所有的内存管理代码。与具体硬件体系结构相关的内存管理代码位于arch/-/mm目录下,如对应于X86的就是arch/i386/mm/fault.c 。
drivers 系统中所有的设备驱动都位于此目录中。它又进一步划分成几类设备驱动,每一种也有对应的子目录,如声卡的驱动对应于drivers/sound。
ipc 此目录包含了核心的进程间通讯代码。
modules 此目录包含已建好可动态加载的模块。
fs Linux支持的文件系统代码。不同的文件系统有不同的子目录对应,如ext2文件系统对应的就是ext2子目录。
kernel 主要核心代码。同时与处理器结构相关代码都放在arch/-/kernel目录下。
net 核心的网络部分代码。里面的每个子目录对应于网络的一个方面。
lib 此目录包含了核心的库代码。与处理器结构相关库代码被放在arch/-/lib/目录下。
scripts 此目录包含用于配置核心的脚本文件。
Documentation 此目录是一些文档,起参考作用。
怎样解读LINUX系统的源代码
解读LINUX
的源代码,这一点阻挡了许多人的热情。
我的建议是:随着技术的发展,LINUX系统也向着桌面化发展,在内核内加入了越来越多的代码,是内核越来越臃肿,增加了阅读的难度.
1.一般情况下LINUX的源代码位于/USR/LINUX下
2.其中的ARCH目录下为一些重要的代码.
3.INCLUDE目录下是编译系统所需要的头文件
4.其他的一些文件大多可以根据其所在文件夹的名字,以及自身的名字来
判断.
蒲У姆绞接枰源娣