java随机森林算法源码(随机森林算法简单实例)
本文目录一览:
- 1、我想知道随机聚类森林算法和随机森林算法有什么不同,希望大家可以帮助我,谢谢。
- 2、求问随机森林算法的简单实现过程?
- 3、随机森林预测结果应该出来啥
- 4、随机森林算法是什么?
- 5、怎样用随机森林算法实现文本分类
- 6、随机森林算法是什么?
我想知道随机聚类森林算法和随机森林算法有什么不同,希望大家可以帮助我,谢谢。
通常随机森林聚类算法指代的是语义纹元森林,而随机森林算法是通常理解的基于决策树的组合分类器算法
求问随机森林算法的简单实现过程?
随机森林(Random forest)指的是利用多棵树对样本进行训练并预测的一种分类器。 并且其输出的类别是由个别树输出的类别的众数而定。在机器学习中有一个地位很重要的包scikit-learn可实现随机森林算法。
原理:(随机森林的分类预测和回归预测sklearn.ensemble.RandomForestRegressor方法)
(1)给定训练集S,测试集T,特征维数F。确定参数:使用到的CART的数量t,每棵树的深度d,每个节点使用到的特征数量f,终止条件:节点上最少样本数s,节点上最少的信息增益m,对于第1-t棵树,i=1-t:
(2)从S中有放回的抽取大小和S一样的训练集S(i),作为根节点的样本,从根节点开始训练
(3)如果当前节点上达到终止条件,则设置当前节点为叶子节点,如果是分类问题,该叶子节点的预测输出为当前节点样本集合中数量最多的那一类c(j),概率p为c(j)占当前样本集的比例;如果是回归问题,预测输出为当前节点样本集各个样本值的平均值。然后继续训练其他节点。如果当前节点没有达到终止条件,则从F维特征中无放回的随机选取f维特征。利用这f维特征,寻找分类效果最好的一维特征k及其阈值th,当前节点上样本第k维特征小于th的样本被划分到左节点,其余的被划分到右节点。继续训练其他节点。
(4)重复(2)(3)直到所有节点都训练过了或者被标记为叶子节点。
(5)重复(2),(3),(4)直到所有CART都被训练过。
随机森林的简单实现过程如下:
一、 开发环境、编译环境:
PyCharm Community Edition 2016.2.3
Python2.7.10
二、 所用库及安装方法:
pandas[python自带]
sklearn:命令行pip install sklearn;如果没有安装pip,先使用easy_install pip安装pip;如果在MAC上没有权限,使用sudo pip install sklearn;
三、 代码介绍
1. 使用pandas读取本地excel的训练集和测试集,将属性集赋给X_train和Y_train;将要预测的集合赋给X_test和Y_test;
2. 使用DictVectorizer对数据进行规范化、标准化
3. 生成RandomForestRegressor对象,并将训练集传入fit方法中进行训练
4. 调用predict函数进行预测,并将结果存入y_predict变量中;
5. 使用mean_squared_error、score方法输出MSE、NMSE值对拟合度、稳定度进行分析;输出feature_importance,对影响最终结果的属性进行分析;
6. 详细代码见附录
四、 附录
# coding:utf-8
import pandas as pd
data_train = pd.read_excel('/Users/xiaoliu/Desktop/data_train.xlsx')
X_train = data_train[['CPI', 'GDP', 'PPI', 'AJR', 'BJFJ', 'FBDR', 'PCFD', 'PCFDED', 'BDR']]
y_train = data_train['FJ']
data_test = pd.read_excel('/Users/xiaoliu/Desktop/data_test.xlsx')
X_test = data_test[['CPI', 'GDP', 'PPI', 'AJR', 'BJFJ', 'FBDR', 'PCFD', 'PCFDED', 'BDR']]
y_test = data_test['FJ']
from sklearn.feature_extraction import DictVectorizer
vec = DictVectorizer(sparse=False)
X_train = vec.fit_transform(X_train.to_dict(orient='records'))
X_test = vec.transform(X_test.to_dict(orient='records'))
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor()
rf.fit(X_train,y_train)
y_predict = rf.predict(X_test)
print 'predict value:',y_predict
from sklearn.metrics import mean_squared_error
print 'MSE:', mean_squared_error(y_test, y_predict)
print 'NMES:',rf.score(X_test, y_test)
print rf.feature_importances_
随机森林预测结果应该出来啥
随机森林基于决策树java随机森林算法源码,随机森林既对数据随机抽样N次,训练N颗决策树最后对结果求平均值,所以想java随机森林算法源码了解随机森林,只需了解决策树即可。
从直观角度来解释,每棵决策树都是一个分类器(假设现在针对的是分类问题),那么对于一个输入样本,N棵树会有N个分类结果。而随机森林集成了所有的分类投票结果,将投票次数最多的类别指定为最终的输出,这就是一种最简单的 Bagging 思想。
决策树基于观测到的数据的概率,直观的建立起决策规则,是一种简单、非线性、符合认知的无参数分类(回归)的方法。
随机森林有一个重要的优点就是,没有必要对它进行交叉验证或者用一个独立的测试集来获得误差的一个无偏估计。它可以在内部进行评估,也就是说在生成的过程中就可以对误差建立一个无偏估计。
java随机森林算法源码我们知道,在构建每棵树时,我们对训练集使用了不同的bootstrap sample(随机且有放回地抽取)。所以对于每棵树而言(假设对于第k棵树),大约有1/3的训练实例没有参与第k棵树的生成,它们称为第k棵树的oob样本。
而这样的采样特点就允许我们进行oob估计,它的计算方式如下java随机森林算法源码:对每个样本,计算它作为oob样本的树对它的分类情况(约1/3的树)java随机森林算法源码;然后以简单多数投票作为该样本的分类结果;最后用误分个数占样本总数的比率作为随机森林的oob误分率。
oob误分率是随机森林泛化误差的一个无偏估计,它的结果近似于需要大量计算的k折交叉验证。
介绍
作为新兴起的、高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性。
最初,我是在参加校外竞赛时接触到随机森林算法的。最近几年的国内外大赛,包括2013年百度校园电影推荐系统大赛、2014年阿里巴巴天池大数据竞赛以及Kaggle数据科学竞赛,参赛者对随机森林的使用占有相当高的比例。
随机森林算法是什么?
随机森林指的是利用多棵树对样本进行训练并预测的一种分类器。该分类器最早由Leo Breiman和Adele Cutler提出java随机森林算法源码,并被注册成java随机森林算法源码了商标。
在机器学习中,随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定。 Leo Breiman和Adele Cutler发展出推论出随机森林的算法。 而 "Random Forests" 是java随机森林算法源码他们的商标。
这个术语是1995年由贝尔实验室的Tin Kam Ho所提出的随机决策森林(random decision forests)而来的。
这个方法则是结合 Breimans 的 "Bootstrap aggregating" 想法和 Ho 的"random subspace method"以建造决策树的集合。
学习算法
根据下列算法而建造每棵树:
1、 用N来表示训练用例(样本)的个数,M表示特征数目。
2、 输入特征数目m,用于确定决策树上一个节点的决策结果java随机森林算法源码;其中m应远小于M。
3、 从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集(即bootstrap取样),并用未抽到的用例(样本)作预测,评估其误差。
4、 对于每一个节点,随机选择m个特征,决策树上每个节点的决定都是基于这些特征确定的。根据这m个特征,计算其最佳的分裂方式。
5、 每棵树都会完整成长而不会剪枝,这有可能在建完一棵正常树状分类器后会被采用)。
扩展资料:
基于随机森林的非监督学习
作为构建的一部分,随机森林预测器自然会导致观测值之间的不相似性度量。还可以定义未标记数据之间的随机森林差异度量:其思想是构造一个随机森林预测器,将“观测”数据与适当生成的合成数据区分开来。
观察到的数据是原始的未标记数据,合成数据是从参考分布中提取的。随机森林的不相似性度量之所以吸引人,是因为它能很好地处理混合变量类型,对输入变量的单调变换是不敏感的,而且在存在异常值的情况下度量结果依然可靠。
由于其固有变量的选择,随机森林不相似性很容易处理大量的半连续变量。
参考资料:百度百科-随机森林
怎样用随机森林算法实现文本分类
不了解什么是随机森林。
感觉应该是一种算法。
如果做计算机视觉建议你用OpenCV,
R语言主要用在统计分析、机器学习领域。
你找几篇这方面的文献看看别人跟你做类似课题时是用C++还是R。
随机森林算法是什么?
随机森林是一种比较新的机器学习模型。
经典的机器学习模型是神经网络,有半个多世纪的历史了。神经网络预测精确,但是计算量很大。上世纪八十年代Breiman等人发明分类树的算法(Breiman et al. 1984),通过反复二分数据进行分类或回归,计算量大大降低。
2001年Breiman把分类树组合成随机森林(Breiman 2001a),即在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,再汇总分类树的结果。随机森林在运算量没有显著提高的前提下提高了预测精度。
随机森林对多元共线性不敏感,结果对缺失数据和非平衡的数据比较稳健,可以很好地预测多达几千个解释变量的作用(Breiman 2001b),被誉为当前最好的算法之一(Iverson et al. 2008)。
随机森林优点:
随机森林是一个最近比较火的算法,它有很多的优点:
a、在数据集上表现良好,两个随机性的引入,使得随机森林不容易陷入过拟合。
b、在当前的很多数据集上,相对其他算法有着很大的优势,两个随机性的引入,使得随机森林具有很好的抗噪声能力。
c、它能够处理很高维度(feature很多)的数据,并且不用做特征选择,对数据集的适应能力强:既能处理离散型数据,也能处理连续型数据,数据集无需规范化。