-102的源码反码补码(+101的原码反码补码)
本文目录一览:
- 1、怎样表示—10的原码,反码,补码呀?
- 2、十进制102原码,反码,补码是多少
- 3、原码,补码,反码都是什么意思,怎么算啊
- 4、已知计算机的字长为了8位,求十进制数102和-102的原码,反码和补码。
- 5、已知计算机的字长为8位,求十进制数 -102 的原码、反码和补码。
- 6、分别用原码,补码,反码表示有符号数+102和-103
怎样表示—10的原码,反码,补码呀?
-10的原码10001010,反码11110101,补码11110110。
负数的符号位是1,也就是最高位是1,所以在说原码反码补码的时候,要限定表达位数。简单来说,以八位为例:
原码就是本身值的二进制码,所以-10=10001010。
反码按位取反,注意符号位不变,于是-10=11110101。
补码在反码基础上加一,-10=11110110。
扩展资料
原码的优缺点
1、优点
简单直观。例如,用8位二进制表示一个数,+11的原码为00001011,-11的原码就是10001011。
2、缺点
原码不能直接参加运算,可能会出错。例如数学上,1+(-1)=0,而在二进制中00000001+10000001=10000010,换算成十进制为-2,显然出错了。
所以原码的符号位不能直接参与运算,必须和其他位分开,这就增加了硬件的开销和复杂性。
十进制102原码,反码,补码是多少
十进制102原码-102的源码反码补码,反码-102的源码反码补码,补码(按字节)是-102的源码反码补码:
原码:0110 0110, 反码:1001 1001, 补码:1001 1010
原码,补码,反码都是什么意思,怎么算啊
把十进制数转换成二进制数后,二进制数就是原码
例如:十进制:2 ----- 二进制:10
“二进制:10“就是原码
为了凑够8位,在二进制10前面加6个0,变成00000010
2的原码:00000010
2的反码:00000010
2的补码:00000010
也就是,正数的原码,反码,补码都相同
下面是负数的原码、反码、和补码:
3的原码:00000011 -3的原码:10000011 也就是最左边的那个数表示正负,0代表正,1代表负,它也叫符号位
-3的原码:10000011
-3的反码:11111100 负数的反码是对其原码按位取反,符号位不变
-3的补码:11111101 负数的补码是在其反码的末位加1
计算机用补码计算
已知计算机的字长为了8位,求十进制数102和-102的原码,反码和补码。
原码就是这个数本身的二进制形式。
例如
0000001 就是+1
1000001 就是-1
正数的反码和补码都是和原码相同。
负数的反码是将其原码除符号位之外的各位求反
[-3]反=[10000011]反=11111100
负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。
[-3]补=[10000011]补=11111101
一个数和它的补码是可逆的。
为什么要设立补码呢?
第一是为了能让计算机执行减法-102的源码反码补码:
[a-b]补=a补+(-b)补
第二个原因是为了统一正0和负0
正零:00000000
负零:10000000
这两个数其实都是0,但他们的原码却有不同的表示。
但是他们的补码是一样的,都是00000000
特别注意,如果+1之后有进位的,要一直往前进位,包括符号位-102的源码反码补码!(这和反码是不同的!)
[10000000]补
=[10000000]反+1
=11111111+1
=(1)00000000
=00000000(最高位溢出了,符号位变成了0)
有人会问
10000000这个补码表示的哪个数的补码呢?
其实这是一个规定,这个数表示的是-128
所以n位补码能表示的范围是
-2^(n-1)到2^(n-1)-1
比n位原码能表示的数多一个
又例:
1011
原码:01011
反码:01011 //正数时,反码=原码
补码:01011 //正数时,补码=原码
-1011
原码:11011
反码:10100 //负数时,反码为原码取反
补码:10101 //负数时,补码为原码取反+1
0.1101
原码:0.1101
反码:0.1101 //正数时,反码=原码
补码:0.1101 //正数时,补码=原码
-0.1101
原码:1.1101
反码:1.0010 //负数时,反码为原码取反
补码:1.0011 //负数时,补码为原码取反+1
总结:
在计算机内,定点数有3种表示法:原码、反码和补码
所谓原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。
反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。
补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
1、原码、反码和补码的表示方法
(1) 原码:在数值前直接加一符号位的表示法。
例如: 符号位 数值位
[+7]原= 0 0000111 B
[-7]原= 1 0000111 B
注意:a. 数0的原码有两种形式:
[+0]原=00000000B [-0]原=10000000B
b. 8位二进制原码的表示范围:-127~+127
2)反码:
正数:正数的反码与原码相同。
负数:负数的反码,符号位为“1”,数值部分按位取反。
例如: 符号位 数值位
[+7]反= 0 0000111 B
[-7]反= 1 1111000 B
注意:a. 数0的反码也有两种形式,即
[+0]反=00000000B
[- 0]反=11111111B
b. 8位二进制反码的表示范围:-127~+127
3)补码的表示方法
1)模的概念:把一个计量单位称之为模或模数。例如,时钟是以12进制进行计数循环的,即以12为模。在时钟上,时针加上(正拨)12的整数位或减去(反拨)12的整数位,时针的位置不变。14点钟在舍去模12后,成为(下午)2点钟(14=14-12=2)。从0点出发逆时针拨10格即减去10小时,也可看成从0点出发顺时针拨2格(加上2小时),即2点(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可映射为+2。由此可见,对于一个模数为12的循环系统来说,加2和减10的效果是一样的;因此,在以12为模的系统中,凡是减10的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。10和2对模12而言互为补数。
同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为8),因此它的运算也是一种模运算。当计数器计满8位也就是256个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,8位二进制数,它的模数为28=256。在计算中,两个互补的数称为“补码”。
2)补码的表示: 正数:正数的补码和原码相同。
负数:负数的补码则是符号位为“1”,数值部分按位取反后再在末位(最低位)加1。也就是“反码+1”。
例如: 符号位 数值位
[+7]补= 0 0000111 B
[-7]补= 1 1111001 B
补码在微型机中是一种重要的编码形式,请注意:
a.采用补码后,可以方便地将减法运算转化成加法运算,运算过程得到简化。正数的补码即是它所表示的数的真值,而负数的补码的数值部份却不是它所表示的数的真值。采用补码进行运算,所得结果仍为补码。
b.与原码、反码不同,数值0的补码只有一个,即 [0]补=00000000B。
c.若字长为8位,则补码所表示的范围为-128~+127;进行补码运算时,应注意所得结果不应超过补码所能表示数的范围。
已知计算机的字长为8位,求十进制数 -102 的原码、反码和补码。
一共8位,第一位是符号位,后7位是数据位
原码:1,1100110
反码:1,0011001(数据位取反)
补码:1,0011010(数据位取反+1)
分别用原码,补码,反码表示有符号数+102和-103
请首先告诉字长,才能确定远原码、反码、补码。
假设字长为8位-102的源码反码补码:
(+102)D=(+1100110)B
则原码=01100110 反码=01100110 补码=01100110
(-103)D=(-1100111)B
则原码=11100111 反码=10011000 补码=10011001
规则:
1)首先将十进制数转换为二进制数,写出原码-102的源码反码补码;
按照所给字长,最高位为符号位,将符号数字化表示,+号位0,负号为1,其余位为有效数字位,填入相应二进制数,字长不足补0(注意:如果是纯正数,在符号位与最高有效位之间补0,如果是纯小数,在最低位后面补0);
2)对于正数,原码、反码、补码相同
3)对于负数,原码变反码:符号位不变,其余各位按位取反
原码变补码:符号位不变,其余各位按位取反 ,末尾加1