体育资讯网

您现在的位置是:首页 > 分类8 > 正文

分类8

精细化工中试放大操作(精细化工中试和精馏实训装置工艺)

hacker2022-06-08 02:48:27分类878
本文目录一览:1、《精细化工》与《化学工程与工艺》这两个专业的区别

本文目录一览:

《精细化工》与《化学工程与工艺》这两个专业的区别

我也是学化学工程与工艺(无机方向)的,下面是我的观点精细化工中试放大操作:精细化工偏重于有机方面的东西精细化工中试放大操作,产品附加值高,比如化妆品。精细化工也属于化学工艺与工艺的一个分支,化学工程与工艺属于一个大类,不同的学校细分得不一样。化学工程学的主要属于设计类东西,也就是工艺开发,比如一个产品的工艺流程、反应路径选择、设备选用、工厂布置、工程概算,总之就是学工艺,既可以从事工艺开发,又可以从事操作工作。就我个人观点而言,精细化工在国内不咋样,除非你认定某个学校的精细化工很好,就可以报考。就业而言,差别不大,化学工程与工艺好点,因为懂工艺,懂得工程的东西,看问题也更透彻,以后提升的空间更大。而且男生,学化学工程与工艺要好点。具体的你自己决定吧。

如何进行精细化工新产品的开发

精细化学品的研发一般要分为三个部门,共同协作,完成产品最终的工业化定型:实验室小试→中试→工业化放大,对应三个部门分别是合成部→中试部→工程部。

1、化学实验室小试:化学实验室是提供化学实验条件及其进行科学探究的重要场所,实验室小试主要研究化学反应的本质。其内有大量的仪器:铁架台、石棉网、酒精灯等实验工具,以及加氢、加压釜等成套的实验室设备。化学实验室小试处于整个项目的最前端,是后续工作开展的先决条件,实验室小试允许失败,需经过无数次的化学实验,解决了化学反应、分离过程和所涉及物料的分析认定,拿出合格试样,且收率等经济技术指标达到预期要求,同时验证各项工艺参数和技术指标,为后续的中试实验提供更为详实的参数。

2、中试,中试过程要解决的问题是:如何釆用工业手段、设备、工艺管道,将小试的全流程打通,并基本达到小试的各项经济技术指标,规模也比小试扩大很多倍,中试过程也会有创新、发明的内容。

小试中可以将一种物料从一个容器定量的移入另一器皿,往往是用手操作;但在中试中就要解决选用何种类型、何种规格、何种材质的泵,采用何种计量方式,以及所涉及的安全、环保、防腐、设备选型选材等一系列问题;这难度稍微偏大一些了,有时要解决此类问题也颇令人伤脑筋,甚至很难达到满意的结果,更甚者依据现有的技术条件根本就无法实现中试,这就是为什么很多科研成果很多年了依然躺在实验室里,没有任何价值可言。

中试就是要解决诸如此类的釆用工业装置与手段过程中所碰到的问题;不仅要保证小试中非常注意的物料衡算和水平衡,也包括小试中不大在意的热量衡算问题,为进一步实现工业化放大,实现真正工业意义的经济规模的大生产提供可靠的流程手段及数据基础 。

3、工业化放大:完成中试之后,工艺路线已经基本确定,各项工艺数据趋于稳定,产品合格率基本达标;此时进一步放大,即我们所说的工业化放大。在此阶段的难度和复杂程度更大了,涉及的广度更广了。工业化放大技术人员不仅需要有丰富现场经验、熟知各种设备的选型选材、还要有非常高的理论水平、还要有设计绘图的能力和对可预见问题的快速洞见能力、要做到科学理论和生产实践经验的无缝对接。有如下步骤:

(1)工艺路线的最终确定

(2)Aspen模拟与PFD图纸

(3)设备的选型与选材:选择最适宜的工业反应器型式或称选型。选型过程包括对多种因素的综合考虑。例如,所能达到的指标、设备投资、能耗和操作费用、设备制造和材料、环保和安全性、操作和控制以及人员素质等。

(4)关键设备的选型:如反应器采用何种型式为好,对传热、反应温度控制、催化剂寿命、中毒、再生,通过中试要搞清。另外特殊的如干燥型式,特别是浆料,应由试验选定设备。又如过滤,看似简单而实际不同物料的过滤机型式选择,滤布选择,也应由试验确定,避免工程返工。

(4)废水、废气采用何种处理方式,以期达到达标排放;

(5)出具化工工艺包文件:包含但不限于PID图、物料平衡图、平面布置图、立面布置图、设备数据表、逻辑控制图等等。

(6)与设备厂家对接,由于不同厂家的设备条件不同,故在初步设计阶段(工艺包设计阶段),需要确定关键核心设备的厂家。

(7)将工艺包提交给设计院,与设计院对接,进行施工蓝图的设计。

精细化工中试设备有哪些

常用的中试设备有:真空泵、制冷机、锅炉、磁力泵、冷凝器、压缩机、反应釜等

化工中的“设备选型”和“过程放大”

化工生产的过程,一言以蔽之,就是化学实验技术在工程中的应用。然而化工生产不是仅仅是化学问题,在化学实验室的理想条件下,实验的实施相对容易,可以得到比较理想的指标。实验室的规模,可以使很多过程在间歇条件下实现。实验室中的过程通常是在尽可能简单的条件下进行,并尽可能排除对过程产生不利影响的因素,在所寻求的优化条件下操作,以期得到最好的结果,筛选出最好的催化剂并获得反应物浓度、流速和反应温度等要素之间的关系。但是在工业生产中,这些过程比实验室中进行的同一性质的过程大数万数十万倍,并且大型过程多数是连续的,在小型设备中可不予考虑的不均匀性,在大型设备中显得十分突出并且严重影响着生产指标。因此,将实验室中所获得的结果在工业规模实施就成了一个完全不同的问题。要将实验室结果过渡到化工生产,在连续不断的过程中大规模、动态地完成指定的化学反应及其他物理过程,就必须综合其它学科和技术,搞清楚并控制住无聊的流动、混合、反应和分离等一系列过程。如果说实验室化学家的任务是制备催化剂,筛选出最好的催化剂,并通过实验确定适宜的反应条件,那么化工项目的开发,即化学实验原理在工业生产领域的应用,则是化工生产过程工程师的任务。

第二部分:化工项目开发的方法介绍

设备选型

在化学家工作基础上,过程工程师的任务是选择最适宜的工业反应器型式或称选型。选型过程包括对多种因素的综合考虑。例如,所能达到的指标、设备投资、能耗和操作费用、设备制造和材料、环保和安全性、操作和控制以及人员素质等。

过程放大

所谓放大,是根据所选定的反应器型式,通过实验或其他可以利用的一切手段,在最短的时间内,用最少的投资,进行设备的放大,供设备工程师选购或制造设备所用。

现代过程工业的标志之一是设备大型化,因为过程工业的效益获得主要依靠设备的大型化,而不是依靠增加设备数来实现。化学工业属于过程工业,随着技术的进步,化学工业规模不断增大。例如,单套乙烯装置生产能力从30万吨/年 提高到45万吨/年,又提高到60万吨/年乃至100万吨/年。又如甲醇,单套装置的能力从10万吨/年提高到40万吨/年,又提高到100万吨/年乃至200万吨/年。总之,规模是在不断扩大的。

长期以来,就化学工业来说,小试验撑过为什么不能迅速产业化,就技术而论,对以化学反应为特征的项目来说,认识放大规律和利用化工放大技术以实现规模生产时关键,也是我国与发达国家的重要差距。(换个位置)

为了能真正地面对国际竞争,我们必须重视过程放大,建设大型化化工装置。

化工过程有下面两种类型,一是传递过程,包括传动、传热和传质过程,属于没有物质组成变化的物理过程;二十化学反应过程那个,属于有组分变化的化学过程。这些过程是在设备中实现的,所以过程放大就是设备能力的放大。

过程放大一般经历的阶段

(1) 实验室研究阶段;

(2) 小量试制阶段;

(3) 按预定工艺规模进行概念设计;

(4) 中试,着重解决概念设计中遇到的问题;

(5) 编制工艺软件包;

(6) 按要求的规模进行工程设计;

(7) 工业装置的建设和投产。

过程放大的方法

1.全流程逐级放大

一种最为传统的方法是通过从小型试验、稍大规模的试验、中间试验、扩大中间试验,逐级地实现大型工业生产。这种通过多个试验层次的逐级放大过程必然是耗时费资的。在过程工业发展的早期,经验放大几乎成了唯一的方法。过程开发技术发展到今天,纯经验放大显然不大可取了,但对于一些过于复杂的、人们认识甚少的过程,有时还不得不求助于

经验放大。

2.数学模拟法放大

建立数学模型(一组数学方程)对过程进行描述,并通过不同规模的实验以确定模型的参数,然后通过计算机模拟过程大型化后的各种行为,以确定放大的准则。这种放大从理论上是合理的,然而事实表明,单纯地用数学模拟法放大的成功例子不多,其原因是:

(1)由于实际过程通常极为复杂,而人们对它们

的认识往往还不够系统和全面,因而为数学模型的

建立带来困难;

(2)即使对复杂的实际过程已完全了解,数学模型的建立必须作出不少简化假定,因而为了便于描述,很可能得到了过度简化的模型;

(3)实验测定的模型参数的可靠性往往受实验手段的限制和实验过程中噪音的干扰,因此模型参数存在或多或少的不确定性。

由于数学模拟法放大只能适用于人们对过程的认识已相当透彻,参数的测定相当可靠的场合。随着人们认识水平、测试手段和计算机应用水平的提高,数学模型与计算机相结合,建立全流程的数学模型进行放大,不乏有成功的例子,如低压法甲醇就是一例。诚然,利用数学模型仍需做一些辅助实验作为补充和验证,但采用数学模拟放大是过程放大最省时省钱的有效方法。

过程放大应注意的问题

1. 必须保证设备放大后经济上的合理性和各项指标的先进性及系统调优

设备放大以后还必须保证经济上的合理性和各项指标的先进性。往往放大之后,有一些指标趋于合理,如能耗一般可以降低。但另一些指标,由于在大型化以后,如反应产物的收率往往有所降低,温度等操作条件不易控制,这就是通常所说的“放大效应”。放大效应被认为是一种弊端。我们的一个重要任务就是尽可能使这些指标在过程放大后仍然保持一个较高水平。另一个现实是,一个实际过程,通常不能处在最优的操作状态下。这是因为过程的复杂性和人们的认识能力限制所决定的,何况过程的一些参数会随时间变化。

上述仅就单个设备而言,因为过程是由多套设备组成完整的流程,即是一个系统。从这个意义上讲,过程放大应该是系统放大,系统中单个设备的放大并不等于系统放大,因此必须要系统优化。所以,完整的过程放大应包括设备放大与系统调优。

2. 中试规模的确定

为什么要进行中试?需要验证小试规律,但更重要的是解决大生产装置可能遇到的问题,那么大生产装置可能会遇到什么问题?对于一个新产品,尚未工业化是无法回答的,为了尽可能预知可能遇到的问题,就是先搞一个概念设计,概念设计的规模应是预想的工业装置规模,在进行概念设计的过程中,可以套用现有的过程经验和消化公开发表的文献资料,但在假想的工业规模设计过程中,仍会碰到许多问题(如数据、材质、控制方法、反应终点控制、物料平衡等),这些问题妨碍概念设计进一步深入进行,恰恰就是这些问题要在中试中解决。为了解决或搞清这些问题,可能要求中试必须达到一定的规模,这就是中试规模确定的依据和中试设计应达到解决这些问题的途径。

3. 要把工程试验数据的获得作为中试的目标之一

许多开发项目不重视基础数据的开发,将会影响工业装置的运行,一个实际例子是某装置建成后,反应釜中物料不进行反应,而反应条件、原材料均符合实验室要求,影响工期达半年。经多次试验比较才查明,搅拌器使用了铜轴瓦,铜离子会阻止反应进行,但这一点,在小试时并未作为相关数据提出,以致设计时没有注意到这一点而影响生产。又如结晶的条件,影响晶粒大小的条件因素是什么,如果能做好相关数据对放大是大有益处的。又如多元组分的气液平衡数据,往往查不到,必须要对反应的全组分进行测定才能获得。又如反应终点的测定和控制等等,这些均是小试不可能做的,而中试是必须要做的。

4. 材质试验

材质的耐腐蚀试验是中试的主要任务,关于这一点,相信大部分可在耐腐蚀手册及供应商获得足够信息。除此之外,还应特别注意少量离子的存在,对腐蚀的作用,如金属离子的影响、卤素的影响、热应力、腐蚀应力等,应测定或做挂片试验,特别要注意“实际”介质,而不是纯介质。如醋酸介质的腐蚀性在有关的手册上也能查到,但醋酸中含有微量的卤素,到底有多大的腐蚀性,没有现成的资料,必须对实际介质进行研究。

5. 注意关键设备的选型

一一般的泵、风机、压缩机的放大不应存在大的问题,精馏、分离的放大,目前也可解决。但反应器是中试要解决的重点,反应器采用何种型式为好,对传热、反应温度控制、催化剂寿命、中毒、再生,通过中试要搞清,为放大设计提供依据。另外特殊的如干燥型式,特别是浆料,应由试验选定设备。又如过滤,看似简单而实际不同物料的过滤机型式选择,滤布选择,也应由试验确定,避免工程返工。

6.对原材料中间产品及成品的研究

一般实验室阶段只用试剂级产品作原料,中试尽可能采用工业级产品作原料,其少量杂质对产品质量有无作用,是什么影响,采用什么方法进行预处理,这些问题要在中试中搞清楚。有些可能要脱水,有些可能要预蒸馏。小试数量少,有些杂质不一定分离出,中试数量多了,尽可能作全分析,把中间体、成品、残渣的组成、成分搞清楚,有利于做物料平衡及对全过程作通盘分析。

7.安全、生产、环保

应收集全部原料中间体及成品的MSDS,对其物料化学特性、毒性全面了解,并采取相应的防护及消防,安全措施。

对排出物、废渣、废液、废水的成分及处理方式作认真研究,以指导工程设计进行。

8. 注意放大过程中,研究人员与工程设计人员的密切配合

因为研究人员主要是在机理上理论上研究较多,工程设计人员会更多考虑工艺布置系统放大等问题。发挥各自特长,有利于工作顺利进行。

总结:

总之,化工过程的放大是新产品开发过程中的必由之路,是科研转化为生产力的毕竟途径。这个环节处理好了,就能加速实现新产品的工业化。过程放大过程中,不能停留在拿出产品,打通流程;也不仅追求设备和单元过程的优化,而是最终追求全系统的优化。

实验室阶段的小试是探索性的,着重研究机理、可行性、物性数据、查(测定)找出工艺路线。这是以研究人员为主,工程人员参加,在小试的基础上,进行目标规模的概念设计,从中找出中试(放大)需要解决的问题,用于指导中试装置的设计。概念设计可由研究人员完成,也可由工程人员完成,当然两者结合共同进行更好。中试装置规模和流程的确定,应能满足概念设计的需要,期间必须做到工程人员和研究人员的密切配合。中试应该是全流程的,否则达不到要求。由于可以借鉴现成有效单元过程和进行计算机模拟,并不机械地要求全流程,避免低水平的重复,集中精力解决难题。在中试完成的基础上完成软件包的编制、基础设计,然后进行工程设计。当然在上述每一阶段均要做技术经济分析,以判断项目的前景,可行性。

精细化工有哪些特点

精细化工的特点:

精细化学品的品种繁多,有无机化合物、有机化合物、聚合物以及它们的复合物。生产技术上所具有的共同特点是:

①品种多、更新快,需要不断进行产品的技术开发和应用开发,所以研究开发费用很大,如医药的研究经费,常占药品销售额的8%~10%。这就导致技术垄断性强、销售利润率高。

②产品质量稳定,对原产品要求纯度高,复配以后不仅要保证物化指标,而且更注意使用性能,经常需要配备多种检测手段进行各种使用试验。这些试验的周期长,装备复杂,不少试验项目涉及人体安全和环境影响。因此,对精细化工产品管理的法规、标准较多。如药典(见《中华人民共和国药典》、《英国药典》)、农药管理法规等。对于不符合规定的产品,往往国家限令其改进,以达到规定指标或禁止生产。

③精细化工生产过程与一般化工生产不同,它的生产全过程,不仅包括化学合成(或从天然物质中分离、提取),而且还包括剂型加工和商品化,由两个部分组成。其中化学合成过程,多从基本化工原料出发,制成中间体,再制成医药、染料、农药、有机颜料、表面活性剂、香料等各种精细化学品。剂型加工和商品化过程对于各种产品来说是配方和制成商品的工艺,它们的加工技术均属于大体类似的单元操作。

④大多以间歇方式小批量生产。虽然生产流程较长,但规模小,单元设备投资费用低,需要精密的工程技术。

⑤产品的商品性强,用户竞争激烈,研究和生产单位要具有全面的应用技术,为用户提供技术服务。

世界精细化学工业最发达的要推美国、联邦德国和日本,其产品产量分别居于世界第一、二、三位。

最近几年国内精细化工行业都在关注一个问题:21世纪精细化工的发展趋势。自从20世纪90年代后期以来,我国决定加大在能源、信息、生物、材料等高新技术领域的投资力度,化工作为传统产业没有被列入国家优先发展的行列,而被有的人归于夕阳工业。但事实并非如此,特别是我们精细化工,由于它在国民经济中的特殊地位,由于它和能源、信息、生物化工以及材料学科之间的紧密联系,它在我国现代化建设中的作用将愈来愈重要,而成为不可替代、不可或缺的关键一环。《2014-2018年中国精细化工行业市场前瞻与投资战略规划分析报告》分析,目前我国的专用化学品行业仍处于行业生命周期中的成长前期,而涂料、日用化学品和农药行业已经处于成长后期。 在这里我充满信心地告诉大家,精细化工在中国、乃至在世界,依然是朝阳工业,前景一片光明。

意义

精细化工与工农业、国防、人民生活和尖端科学都有着极为密切的关系,是与经济建设和人民生活密切相关的重要工业部门,是化学工业发展的战略重点之一。 70 年代两次世界石油危机,迫使各国制定化学工业精细化的战略决策。这说明发展精细化学工业是关系国计民生的战略举措。

精细化工产值率(精细化率)=(精细化工产品总值/化工产品总值) X100%

美国已由 70 年代的 40 %上升为 90 年代的 53 %,德国由 38.4 %上升到 56% ,日本则达到 57% 。预计 21 世纪时,发达国家的精细化率可

达 60 % ~ 65% 。我国现在仅为 28% ,致使石化工业和各项工业中所需的精细化学品有相当数量需要进口,每年需数十亿美元的外汇。可见发展精细化工对我国国民经济建设何等重要。

下面从几个方面看看精细化工在国民经济中的意义。

农业

农业是国民经济的重要命脉,高效农业成为当今世界各国农业发展的大方向。高效农业中需要高效农药、兽药、饲料添加剂、肥料及微量元素等。单就农药,它包括各种各样的杀虫剂、杀菌剂、杀鼠剂、除草剂、植物生长调节剂及生物农药等。全世界每年因病虫害造成粮食损失占可能收获量的三分之一以上。使用农药后所获效益是农药费用的 5 倍以上。使用除草剂其效益可达 10 倍于物理除草。兽药和饲料添加剂可使牲畜生病少、生长快、产值高、经济效益大。

轻工业

当今社会人们的生活水平越来越高,生活需求与日俱增。由原先的生活必需品增加到现在许多的高档消费品。各种用品讲求高效率、高质量、低价位。单就化妆品一项,其品种数量就够琳琅满目、百花争妍了。美容、护肤、染发、祛臭、防晒、生发、面膜、霜剂、粉剂、膏剂、面油、手油、早用品、晚用品、日用品等举不胜举。个人卫生用品也是争奇斗艳。过去的洗涤品只有肥皂、洗衣粉等几种,现在就很多了。如家用清洗剂中有:

餐具洗洁净、油烟机及厨具清洗剂、玻璃擦净剂、地毯清洗剂等等。还有冰箱用、卫生间用、鞋用等除臭剂,家用空气清新剂等。各种用途的表面活性剂更是精细化工行业最重要、最广泛的物质。各种香料、香精、食品添加剂、皮革工业、造纸工业、纺织印染工业的各种助剂就更是不胜枚举了。总之,轻工业和人们的生活用品就是精细化工的一个很大的市场。

高技术领域

在军事工程、高空、水下、特殊环境等条件下需要各种不同性质和功能的材料。如宇宙火箭、航空与航天飞机、原子反应堆、高温与高压下的作业、能源开发等不同环境下需要的高温高强度结构料。从功能角度来说,各种具有热学、机械、磁学。电子与电学、光学、化学与生物等功能材料,这些都无一不与精细化学品有关。

如在航空工业中,巨型火箭所用的液态氧、液态氢贮箱是用多层保温材料制造,这些材料难于用机械方法连接,而采用了聚氨酯型和环氧—尼龙型超低温胶粘剂进行粘接。大型波音型客机所用的蜂窝结构以及玻璃钢和金属蒙面结构也都离不开胶粘剂。

材料的复合化可以集合各自的优点,从而满足许多特殊用途的要求。继玻璃纤维增强塑料以后,又研究开发出碳纤维、硼纤维和聚芳酰胺纤维等增强轻塑料复合材料,在宇航和航空中,特别需要这种轻质高强度耐高温材料。过去,火箭喷管的喉部是用石墨制造的,但随着火箭的大型化,用石墨制造就困难了,于是出现了比重更小的耐热复合材料,如以碳纤维或高硅氧纤维增强酚醛树脂做喉衬,以玻璃纤维增强塑料做结构部分。美国的阿波罗宇宙飞船着陆用发动机的燃烧室就是采用这些复合材料的。

发表评论

评论列表

  • 瑰颈酒奴(2022-06-08 06:47:15)回复取消回复

    无机化合物、有机化合物、聚合物以及它们的复合物。生产技术上所具有的共同特点是:①品种多、更新快,需要不断进行产品的技术开发和应用开发,所以研究开发费用很大,如医药的研究经费,常占药品销售额的8%~10%。这就导致技术

  • 俗野叙詓(2022-06-08 13:40:08)回复取消回复

    问题,精馏、分离的放大,目前也可解决。但反应器是中试要解决的重点,反应器采用何种型式为好,对传热、反应温度控制、催化剂寿命、中毒、再生,通过中试要搞清,为放大设计提供依据。另外特殊的如干燥型