低压分布式光伏柔性控制(柔性光伏发电)
本文目录一览:
- 1、什么是低压光伏发电
- 2、光伏电站 分布式和集中式的区别
- 3、集中式光伏电站和分布式光伏电站的区别
- 4、什么是光伏发电?什么是分布式光伏发电
- 5、光伏发电并网有哪些控制方法
- 6、什么是分布式光伏发电系统?
什么是低压光伏发电
低压光伏发电新装包括以下两种:①居民光伏低压新装:指居民住宅客户申请以380(220)伏电压等级接入电网的分布式光伏项目。②非居民光伏低压新装:指工商政企类客户申请以380(220)伏电压等级接入电网的分布式光伏项目。您可关注“南方电网95598”公众平台我的用电业务办理用电申请光伏并网点击“办理”>填写基本信息后提交即可,或登录南方电网统一服务平台我的业务业务办理点击“居民住宅客户”下对应的“光伏低压新装”按钮阅读办理须知,勾选“我已阅读”,点击“开始办理”输入“用户名称、用电地址、报装容量”等基本信息>输入联系信息>点击提交申请。
光伏电站 分布式和集中式的区别
【分布式光伏电站的特点】分布式基本原则:主要基于建筑物表面,就近解决用户的用电问题,通过并网实现供电差额的补偿与外送。
一、优点:
1、光伏电源处于用户侧,发电供给当地负荷,视作负载,可以有效减少对电网供电的依赖,减少线路损耗。
2、充分利用建筑物表面,可以将光伏电池同时作为建筑材料,有效减少光伏电站的占地面积。
3、与智能电网和微电网的有效接口,运行灵活,适当条件下可以脱稿电网独立运行。
二、缺点:
1、配电网中的潮流方向会适时变化,逆潮流导致额外损耗,相关的保护都需要重新整定,变压器分接头需要不断变换,等问题。
2、电压和无功调节的困难,大容量光伏的接入后功率因数的控制存在技术型难题,短路电力也将增大。
3、需要在配电网级的能量管理系统,在大规模光伏接入的情况下进行负载的同一管理。对二次设备和通讯提供了新的要求,增加了系统的复杂性。
【集中式光伏电站的特点】集中式基本原则:充分利用荒漠地区丰富和相对稳定的太阳能资源构建大型光伏电站,接入高压输电系统供给远距离负荷。
一、优点:
1、由于选址更加灵活,光伏出力稳定性有所增加,并且充分利用太阳辐射与用电负荷的正调峰特性,起到削峰的作用。
2、运行方式较为灵活,相对于分布式光伏可以更方便地进行无功和电压控制,参加电网频率调节也更容易实现。
3、建设周期短,环境适应能了强,不需要水源、燃煤运输等原料保障,运行成本低,便于集中管理,受到空间的限制小,可以很容易地实现扩容。
二、缺点:
1、需要依赖长距离输电线路送电入网,同时自身也是电网的一个较大的干扰源,输电线路的损耗、电压跌落、无功补偿等问题将会凸显。
2、大容量的光伏电站由多台变换装置组合实现,这些设备的协同工作需要进行同一管理,目前这方面技术尚不成熟。
3、为保证电网安全,大容量的集中式光伏接入需要有LVRT等新的功能,这一技术往往与孤岛存在冲突。
集中式光伏电站和分布式光伏电站的区别
1、安装位置不同
分布式光伏主要安装在房顶农业大棚顶,主要集中在人员居住的华北华南地带。集中式光伏主要安装在戈壁和沙漠,安装的地区比较偏远荒凉,地皮比较便宜。西北的宁夏、甘肃、新疆、青海等地区居多。
2、并网电压等级不同
对于分布式光伏来讲,都是380V电压并网,使用的是低压脱扣器来并网,而且一个分布式的并网点的个数根据实际情况而定,一个或多个。
而集中式光伏电站并网电压一般常见的是35KV或者110KV。如果该电站是30兆瓦或者30兆瓦以下,不会设立主变,这种多35KV并网。对于30兆瓦以上的电站一般安装主变,经主变升至110KV电压等级后并网。
3、输送距离不同
分布式光伏一般讲发的电就地并网,线路的损耗很低或者可以说没有。补充当地的电量,供当地及附近的用电用户使用。集中式光伏电站发出的电经高压并网,将电一层层的输送当更高的电压等级,将高压电输送到华东等地区,以实现西电东输。
什么是光伏发电?什么是分布式光伏发电
直接贴网页回答即可:
一、什么是光伏发电?什么是分布式光伏发电?
光伏发电是指利用太阳能辐射直接转变成电能的发电方式,光伏发电是当今太阳能发电的主流,所以,现在人们常说的太阳能发电就是光伏发电。
光伏分布式发电是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。
然而分布式发电对如何最大化太阳能发电量、如何保证电网安全也提出了严格要求,这一过程光伏逆变器的功能性和稳定性也显得异常关键。分布式发电遵循因地制宜、清洁高效、分散布局、就近利用的原则,充分利用当地的太阳能资源,替代和减少化石能源消费。
分布式发电并网方式可以“自发自用,余电上网”,也可“统购统销”(全额出售给电网)。
二、分布式光伏发电有哪些应用形式?
分布式光伏发电包括并网型、离网型及多能互补微网等应用形式,并网型分布式发电多应用于用户附近,一般与中、低压配电网并网运行,自发自用,不能发电或电力不足时从电网上购电,电力多余时向网上售电。
离网型分布式光伏发电多应用于边远地区和海岛地区,它不与大电网连接,利用自身的发电系统和储能系统直接向负荷供电。
分布式光伏系统还可以与其它发电方式组成多能互补微电系统,如水、风、光等,既可以作为微电网独立运行,也可以并入电网联网运行。
三、分布式光伏发电适用于哪些场合?
分布式光伏发电系统的适用场合可分为两大类:
一是可在全国各类建筑物和公共设施上推广,形成分布式建筑光伏发电系统,利用当地各类建筑物和公共设施建立分布式发电系统,满足电力用户的部分用电需求,为高耗能企业提供生产用电。
二是可在偏远地区海岛等少电无电地区推广,形成离网发电系统或微电网,由于经济发展水平的差距原因,我国仍有部分偏远地区的人口没有解决基本用电问题,以往的农网工程大多依靠大电网的延申,小水电、小火电等供电,电网延伸困难极大,且供电半径过长,导致供电能质量较差,发展离网型分布式发电不仅可以解决处于无电少电地区居民基本用电问题,还可以清洁高效地利用当地的可在生能源,有效的解决了能源和环境之间的茅盾。
四、哪些地点适合安装分布式光伏发电系统?
工业领域厂房:特别是在用电量比较大、网购电费比较贵的工厂,通常厂房屋顶面积很大,屋顶开阔平整,适合安装光伏阵列并且由于用电负荷较大,分布式光伏并网系统可以做以就地消纳,抵消一部分网购电量,从而节省用户的电费。
商业建筑:与工业园区的作用效果类似,不同之处在于商业建筑多为水泥屋顶,更有利与安装光伏阵列,但是往往对建筑美观性有要求,按照商厦、写字楼、酒店、会议中心、度假村等服务业的特点,用户负荷特性一般表现为白天较高,夜间较低,能够较好的匹配光伏发电特性。
农业设施:农村有大量的可用屋顶,包括自有住宅、疏菜大棚、鱼塘等,农村往往处在公共电网的未稍,电能质量较差,在农村建设分布式光伏系统可提高用电保障和电能质量。
市政等公共建筑物:由于管理规范统一,用户负荷和商业行为相对可靠,安装积极性高,市政等公共建筑物也适合分布式光伏的集中连片建设。
边远农牧区及海岛:由于距离电网遥远,我国西藏、青海、新疆、内蒙古、甘肃、四川等省份的边远农牧区以及我国沿海岛屿还有数百万无电人口,离网型光伏系统或与其它能源互补微网发电系统非常适合在这些地区应用。
五、农业大棚、鱼塘可以安装分布式光伏并网系统吗?
大棚的升温、保温一直都是个困扰农户的重点问题,光伏农业大棚有望解决这一难题,由于夏季的高温在6-9 月份众多品类的蔬菜无法正常成长,而光伏农业大棚如同在农业大棚外添加了一个分光计,可隔绝红处线, 阻止过多的热量进去大棚,在冬季和黑夜的时候又能阻止大棚内的红处波段的光向外辐射,起到保温效果。光伏农业大棚能供给农业大棚内照明等所需电力,剩余电力还能并网。
在离网形式的光伏大棚中可与LED系统相互调配,白日阻光保障植物生长,同时发电。黑夜LED 系统应用白日电力提供照明。
在鱼塘中也可以架设光伏阵列,池塘可以继续养鱼,光伏阵列还可以为养鱼提供良好的遮挡作用,较好地解决了发展新能源和大量占用地的矛盾,因此农业大棚和鱼塘可以安装分布式光伏发电系统。
(更多咨询:网页链接)
光伏发电并网有哪些控制方法
光伏发电系统并网有 2 种控制方法:集中式并网和分散式并网。
集中式并网:特点是所发电能被直接输送到大电网,由大电网统一调配向用户供电,与大电网之间的电力交换是单向的。适于大型光伏电站并网,通常离负荷点比较远,荒漠光伏电站采用这种方式并网。
分散式并网:又称为分布式光伏发电并网,特点是所发出的电能直接分配到用电负载上,多余或者不足的电力通过联结大电网来调节,与大电网之间的电力交换可能是双向的。适于小规模光伏发电系统,通常城区光伏发电系统采用这种方式,特别是于建筑结合的光伏系统。
光伏发电系统可分为离网光伏发电系统和并网光伏发电系统,并网光伏发电系统比离网型光伏发电系统投资减少25 %。将光伏发电系统以微网的形式接入到大电网并网运行,与大电网互为支撑,是提高光伏发电规模的重要技术出路,光伏发电系统并网运行也是今后技术发展的主要方向,通过并网能够扩张太阳能使用的范围和灵活性。
光伏发电并网就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。可以分为带蓄电池的和不带蓄电池的并网发电系统。带有蓄电池的并网发电系统具有可调度性,可以根据需要并入或退出电网,还具有备用电源的功能,当电网因故停电时可紧急供电,带有蓄电池的光伏并网发电系统常常安装在居民建筑。不带蓄电池的并网发电系统不具备可调度性和备用电源的功能,一般安装在较大型的系统上。
光伏发电并网有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,还没有太大发展。而分散式小型并网光伏,特别是光伏建筑一体化光伏发电,由于投资小、建设快、占地面积小、政策支持力度大等优点,是光伏发电并网的主流。
什么是分布式光伏发电系统?
光伏分布式发电是一种新型的、具有广阔发展前景的发电和能源综合利用方式低压分布式光伏柔性控制,它倡导就近发电低压分布式光伏柔性控制,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决低压分布式光伏柔性控制了电力在升压及长途运输中的损耗问题。然而分布式发电对如何最大化太阳能发电量、如何保证电网安全也提出了严格要求,这一过程光伏逆变器的功能性和稳定性也显得异常关键。
分布式发电系统中光伏发电的关键技术
对于以上各种光伏发电结构,不论是需要与主干电网并联运行的荒漠电站和光伏一体建筑,还是与储能设备和其他能源联合发电的独立光伏电网,都具有分布式发电的特点。
在分布式发电系统中,光伏发电相关的关键技术和研究热点有:
1. 适应光伏发电的电力电子变换器
目前常用的并网光伏逆变器大多采用DC-DC-AC的双级结构。这是因为光伏阵列提供的直流电压普遍低于要求的交流输出电压,而DC-AC变换电路中,应用最广泛的全桥逆变器和半桥逆变器均属于Buck型,瞬时输出电压总低于输入电压,只能实现降压变换。为此,一般在桥式逆变电路前增加一级可升压变换的DC-DC变换器,将输入直流电压升高。并且,由于光伏阵列的直流电压典型值比交流电压峰值低很多,DC-DC变换器应当具有高的电压增益。可以用有高频隔离的间接DC-DC变换器达到上述要求,这也同时可以满足电气隔离要求。当然,可以在桥式逆变电路后增加工频升压变压器,在提供电气隔离的同时提高电压等级。双级结构的光伏并网逆变器虽然能够灵活适应各种输入输出电压指标,还具有更高的自由度等级(即更多的可控变量),可同时实现多种功能(例如,电气隔离,MPPT,无功补偿,有源滤波,等),但功率级的数量增多,将降低整体的效率,可靠性和简洁程度,增加系统开销。为此,目前逆变器研究的一大发展趋势,就是直接将多功率级的系统架构整合为单级系统,即所谓单级逆变器。
储能元件是光伏系统重要的组成部分。针对各种储能元件的特点,找到合适的电力电子变换器结构,也是光伏发电中重要的研究热点。
研究适应光伏发电的电力电子变换器的重点是使光伏系统在整个工作范围内均能实现高效率、高功率密度和高可靠性的运行。
2. 网络拓扑结构及其优化配置
包括太阳能在内的可再生能源的能量密度低,随机性强,由其构成的分布式发电系统的网络拓扑结构与传统的集中式发电系统的网络结构有显著的区别。在此方面,应根据对当地可再生能源的分布预测、随机性与可用性评估、负荷水平评估,提出基于可再生能源的分布式发电系统的网络拓扑;研究分布式发电系统中母线电压的形式(交流或直流)、大小、频率(对于交流形式)等物理量的选择方法;提出该分布式发电系统中对太阳能光伏发电单元、风力发电单元、多元复合储能单元(含飞轮、超级电容和蓄电池)的容量配置方法,以降低系统成本;研究分布式发电系统中各种电力电子变换器的配置及其输入输出电压、功率等级的选择。
3. 分布式发电系统并网控制
由于分布式发电系统具有多能量来源、多变流器(主要是逆变器)并网的特点,因此必须对其并网控制进行研究。在此方面,包括:针对具有多能源多并网逆变器的分布式发电系统,研究其并网运行时相互耦合影响的机理和并网协调控制问题;研究独立运行时多个逆变器的电压和频率的协调控制,以实现动态和稳态负荷的合理分配;针对具有多能源多并网逆变器的分布式发电系统,研究合适的并网、独立控制模式和协调一致的切换控制策略;研究柔性并网、暂态过程以及分布式发电系统对电网或本地负荷的冲击影响等问题;针对具有多能源多并网逆变器的分布式发电系统的特点,开展适合并网逆变器的无盲区孤岛检测方法和防伪孤岛技术研究。
4. 分布式发电系统的能量管理
针对分布式源(DR)的随机性、分布式发电单元的投切、负荷变化、敏感负荷对供电可靠性和电能质量高要求、分布式发电系统附近配电线路拥塞、分布式发电系统与电网之间的供购电计划等问题,研究分布式发电系统各种运行方式下分布式发电单元、储能单元与负荷之间的能量优化,满足经济运行的要求;针对分布式发电系统并网和故障解列时的能量变化,研究分布式发电系统运行方式变化时的能量调度策略,满足分布式发电系统运行方式切换的要求。
5.光伏系统的安全性和可靠性问题
在分布式系统的相关并网规范中,对各发电单元的端口特性提出了具体的要求,为此,需要分析分布式发电系统的稳态及动态特性,包括不同分布式发电单元以及分布式发电系统并网端口特性。稳态情况下主要包括:有功、无功、电压、频率和谐波等特性,考虑到分布式发电高度随机性,还要研究这些特性随时间变化规律。具体到光伏系统,目前遇到的最大安全性和可靠性问题包含以下几个方面:并网逆变器的直流分量注入问题;光伏并网单元的对地漏电流问题;孤岛及其检测技术问题。