体育资讯网

您现在的位置是:首页 > 分类8 > 正文

分类8

光伏太阳能自动复合开关(太阳能室内开关)

hacker2022-06-13 13:28:28分类852
本文目录一览:1、给LED面阵供电,怎样实现市电和太阳能供电的自动切换?

本文目录一览:

给LED面阵供电,怎样实现市电和太阳能供电的自动切换?

在电池板和蓄电池以及市电之间使用太阳能市电互补控制器即可实现市电和太阳能供电的自动切换

太阳能市电互补控制器是智能切换的 在控制器检测到太阳能提供的电量不能满足LED面阵正常工作的情况下 切换到市电供电,在太阳能充电后蓄电池电压回到充电返回点的时候又自动切换成太阳能供电。

这款太阳能市电互补控制器最大的优势 可以在市电给LED面阵供电的同时给蓄电池提供小部分电量 使蓄电池电压维持在切换点电压 满足控制器自身的耗电量 避免了蓄电池馈电状态下继续给控制器供电 更好的保护蓄电池 延长寿命。这是市面上没有的。

北京苇希远阳新能源科技有限公司 姚远

太阳能热水器,全智能测控仪怎么调加热???

简单的手动加热的话,请按下加热键,出厂加热温度默认为65 旁边2个上下方向键,可以调节温度高低,调整完毕后,5秒电加热自我检测后启动。(温度大于设定温度、水位未达到50%。漏电均不启动)。

加热键长按3秒后,设置为恒温模式。

太阳能热水器是将太阳光能转化为热能的加热装置,将水从低温加热到高温,以满足人们在生活、生产中的热水使用。太阳能热水器按结构形式分为真空管式太阳能热水器和平板式太阳能热水器,主要以真空管式太阳能热水器为主,占据国内95%的市场份额。

真空管式家用太阳能热水器是由集热管、储水箱及支架等相关零配件组成,把太阳能转换成热能主要依靠真空集热管,真空集热管利用热水上浮冷水下沉的原理,使水产生微循环而得到所需热水。

工作原理:

集热原理

太阳能热水器把太阳光能转化为热能,将水从低温度加热到高温度,以满足人们在生活、生产中的热水使用。太阳能热水器按结构形式分为真空管式太阳能热水器和平板式太阳能热水器,真空管式太阳能热水器为主,占据国内95%的市场份额。

真空管式家用太阳能热水器是由集热管、储水箱及支架等相关附件组成,把太阳能转换成热能主要依靠集热管。集热管利用热水上浮冷水下沉的原理,使水产生微循环而达到所需热水。

吸热过程

真空管式热水器的吸热时,太阳辐射透过真空管的外管,被集热镀膜吸收后沿内管壁传递到管内的水。管内的水吸热后温度升高,比重减小而上升,形成一个向上的动力,构成一个热虹吸系统。随着热水的不断上移并储存在储水箱上部,同时温度较低的水沿管的另一侧不断补充如此循环往复,最终整箱水都升高至一定的温度。

平板式热水器,一般为分体式热水器,介质则在集热板内因热虹吸自然循环,将太阳辐射在集热板的热量及时传送到水箱内,水箱内通过热交换(夹套或盘管)将热量传送给冷水。介质也可通过泵循环实现热量传递。

循环管路

家用太阳能热水器通常按自然循环方式工作,没有外在的动力。真空管式太阳能热水器为直插式结构,热水通过重力作用提供动力。平板式太阳能热水器通过自来水的压力(称为顶水)提供动力。而太阳能集中供热系统均采用泵循环。由于太阳能热水器集热面积不大,考虑到热能损失,一般不采用管道循环。

使用过程

平板式太阳能热水器为顶水方式工作,真空管太阳能热水器也可实行顶水工作的方式,水箱内可以采用夹套或盘管方式。

顶水工作的优点是供水压力为自来水压力,比自然重力式压力大,尤其是安装高度不高时,其特点是使用过程中水温先高后低,容易掌握,使用者容易适应,但是要求自来水保持供水能力。顶水工作方式的太阳能热水器比重力式热水器成本大,价格高。

1. 温差控制集热循环

太阳能热水地暖系统中有集热器温测器和水温感应器,集热系统吸收太阳能辐射后,集热管温度上升,当集热器温度和水箱温度水温差△t设定值时,检测系统发出指令,循环泵将中央热水器中的冷水输入集热器中,水被加热后再回到水箱中,使水箱内的水达到设定的温度。

2. 地暖管道循环系统

增加一台热水循环泵,通过控制器控制地暖管道循环。当水温达到设定温度时,自动启动地暖循环泵,使高温水通过地暖盘管在室内循环,从而使室内温度不断提高。当水箱水温低于某一设定值时,自动停止地暖管道循环泵。

特点

高科技产品,铜铝阳极化复合板芯或全紫铜板芯,表面处理工艺高,传热性能好,吸热能力强,产水量大。

系统保温性能好,蓄热能量大,保温水箱有蓄水功能,可满足大批量人员集中使用热水,亦可作停水时应急水源之用。

太阳能热水器系统全自动静态运行,无需专人看管、无噪音、无污染、无漏电、失火、中毒等危险,安全可靠,环保节能利国利民。

1、具有排污净化功能 ,水源洁净无污染。

2、真空管式太阳能热水器保温性能好,抗冻能力强。

3、大面积安装对楼面有隔热作用。

以上内容参考:百度百科——太阳能热水器

太阳能热水器控制器怎么设置

1、设置水位上限和温度上限:按一下设置键进入这二个参数光伏太阳能自动复合开关的设置光伏太阳能自动复合开关,此时,原设置光伏太阳能自动复合开关的温度上限和水位上限光伏太阳能自动复合开关的参数不停闪烁,用加水水位键修改水位上限的值(出厂100%,设置范围50-100%),用加温水温键修改温度上限的值(出厂50,设置范围50-90),等待5秒钟自动保存退出。

2、设置定时加水:按住加水水位键3秒,听到“滴”一声后,显示温度的两位数码和“定时加水”指示灯开始同时闪烁,重复按 加水水位键即可设置定时加水的时间。设置时的北京时间加上设入的小时数即为定时加水。

3、设置定时加热时间:按住加温水温键3秒,听到“滴”的一声后,显示温度的二位数码和“定时加热”指示灯开始不停闪烁,重复按加温水温键即可设置定时加热的时间。设置时的北京时间加上设入的小时数即为定时加热的时间,等待5秒自动保存退出“定时加热”指示灯常亮。

4、传感器灵敏度调节:如果遇到水质太纯净或传感器长时间使用结水垢出现灵敏度降低,检测不到最高水位时,可以将接线盒内传感器的灵敏度跳线开关从低跳到高的位置(出厂时传感器的灵敏度设在低的位置)。

扩展资料:

太阳能热水器的特点:

1、高科技产品,铜铝阳极化复合板芯或全紫铜板芯,表面处理工艺高,传热性能好,吸热能力强,产水量大。

2、系统保温性能好,蓄热能量大,保温水箱有蓄水功能,可满足大批量人员集中使用热水,亦可作停水时应急水源之用。

3、太阳能热水器系统全自动静态运行,无需专人看管、无噪音、无污染、无漏电、失火、中毒等危险,安全可靠,环保节能利国利民。

参考资料来源:百度百科——太阳能热水器

太阳能光伏发电系统是由太阳能电池,蓄电池,逆变器,控制器组成。我想知道这四样东西的主要作用都是什么

太阳能发电系统的结构和工作原理

太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar cells)是利用半导体材料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。目前从民用的角度,在国外技术研究趋于成熟且初具产业化的是"光伏--建筑(照明)一体化"技术,而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。

1 太阳能发电原理

太阳能发电系统主要包括:太阳能电池组件(阵列)、控制器、蓄电池、逆变器、用户即照明负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。

1.1 太阳能电源系统

太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。

(1) 电池单元:

由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。 若在内建电场的两侧面引出电极并接上负载,理论上讲由P-N结、连接电路和负载形成的回路,就有"光生电流"流过,太阳能电池组件就实现了对负载的功率P输出。

理论研究表明,太阳能电池组件的峰值功率Pk,由当地的太阳平均辐射强度与末端的用电负荷(需电量)决定。

(2) 电能储存单元:

太阳能电池产生的直流电先进入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。蓄电池技术是十分成熟的,但其容量要受到末端需电量,日照时间(发电时间)的影响。因此蓄电池瓦时容量和安时容量由预定的连续无日照时间决定。

1.2 控制器

控制器的主要功能是使太阳能发电系统始终处于发电的最大功率点附近,以获得最高效率。而充电控制通常采用脉冲宽度调制技术即PWM控制方式,使整个系统始终运行于最大功率点Pm附近区域。放电控制主要是指当电池缺电、系统故障,如电池开路或接反时切断开关。目前日立公司研制出了既能跟踪调控点Pm,又能跟踪太阳移动参数的"向日葵"式控制器,将固定电池组件的效率提高了50%左右。

1.3 DC-AC逆变器

逆变器按激励方式,可分为自激式振荡逆变和他激式振荡逆变。主要功能是将蓄电池的直流

电逆变成交流电。通过全桥电路,一般采用SPWM处理器经过调制、滤波、升压等,得到与照

明负载频率f,额定电压UN等匹配的正弦交流电供系统终端用户使用。

2 太阳能发电系统的效率

在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及负载的效率等组成。但相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围绕着加大吸能面,如双面电池,减小反射;运用吸杂技术减小半导体材料的复合;电池超薄型化;改进理论,建立新模型;聚光电池等。几种太阳能电池的转换效率见表1。

表1 几种太阳能电池的转换效率

实验室典型电池 商品薄膜电池

各种太阳能电池 ηmax(%) 各种太阳能电池 η(%)

单晶硅 24.4 多晶硅 16.6

多晶硅 18.6 铜铟镓硒 18.8

GaAs(单结) 25.7 碲化镉 16.0

a-si(单结) 13 铜铟硒 14.1

充分利用太阳能是绿色照明的重要内容之一。而真正意义上的绿色照明至少还包括:照明系统的高效率,高稳定性,高效节能的绿色光源等。

3.1 发电--建筑照明一体化

目前成功地把太阳能组件和建筑构件加以整合,如太阳能屋面(顶)、墙壁及门窗等,实现了"光伏--建筑照明一体化(BIPV)"。1997年6月,美国宣布了以总统命名的"太阳能百万屋顶计划",在2010年以前为100万座住宅实施太阳能发电系统。日本"新阳光计划"已在2000年以前将光伏建筑组件装机成本降到170~210日元/W,太阳能电池年产量达10MW,电池成本降到25~30日元/W。1999年5月14日,德国仅用一年两个月建成了全球首座零排放太阳能电池组件厂,完全用可再生能源提供电力,生产中不排放CO2。工厂的南墙面为约10m高的PV阵列玻璃幕墙,包括屋顶PV组件,整个工厂建筑装有575m2的太阳能电池组件,仅此可为该建筑提供三分之一以上的电能,其墙面和屋顶PV组件造型、色彩、建筑风格与建筑物的结合,与周围的自然环境的整合达到了十分完美的协调。该建筑另有约45kW容量,由以自然状态的菜子油作燃料的热电厂提供,经设计燃烧菜子油时产生的CO2与油菜生长所需的CO2基本平衡,是一座真正意义上的零排放工厂。BIPV还注重建筑装饰艺术方面的研究,在捷克由德国WIP公司和捷克合作,建成了世界第一面彩色PV幕墙。印度西孟加拉邦为一无电岛117家村民安装了12.5kW的BIPV。国内常州天合铝板幕墙制造有限公司研制成功一种"太阳房",把发电、节能、环保、增值融于一房,成功地把光电技术与建筑技术结合起来,称为太阳能建筑系统(SPBS),SPBS已于2000年9月20日通过专家论证。近日在上海浦东建成了国内首座太阳能--照明一体化的公厕,所有用电由屋顶太阳能电池提供。这将有力地推动太阳能建筑节能产业化与市场化的进程。

3.2 绿色照明光源研究

绿色照明系统优化设计,要求低能耗下获得高的光效输出,并延长灯的使用寿命。因此DC-AC逆变器设计,应获得合理的灯丝预热时间和激励灯管的电压和电流波形。目前处在研究开发中的太阳能照明光源激励方式有四种典型电路:①自激推挽振荡电路,通过灯丝串联启辉器预热启动。该光源系统的主要参数是:输入电压DC=12V,输出光效>495Lm/支,灯管额定效率9W,有效寿命3200h,连续开启次数>1000次。②自激推挽振荡(简单式)电路,该光源系统的主要参数是:输入电压DC=12V,灯管功率9W,输出光效315Lm/支,连续启动次数>1500次。③自激单管振荡电路,灯丝串联继电器预热启动方式。④自激单管振荡(简单式)电路等方式的高效节能绿色光源。

4 结束语

绿色能源和可持续发展问题是本世纪人类面临的重大课题,开发新能源,对现有能源的充分合理利用已经得到各国政府的极大重视。太阳能发电作为一种取之不尽,用之不竭的清洁环保能源将得到前所未有的发展。随着太阳能产业化进程和技术开发的深化,它的效率、性价比将得到提高,它在包括BIPV在内的各个领域都将得到广泛的应用,也将极大地推动中国"绿色照明工程"的快速发展。

PN结与光伏太阳能电池之间的关系

PN结(PN junction)0 o. A5 I: B9 a F! R

$ t9 B. X$ S: B b' M( o/ f采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。PN结具有单向导电性。P是positive的缩写,N是negative的缩写,表明正荷子与负荷子起作用的特点。

% S2 S! ]) x! X# y6 q2 m W9 a" q+ f( G% b g( v. ]

一块单晶半导体中 ,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时 ,P 型半导体和N型半导体的交界面附近的过渡区称为PN结。PN结有同质结和异质结两种。用同一种半导体材料制成的 PN 结叫同质结 ,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。制造异质结通常采用外延生长法。

+ Z" a0 r( C2 A0 N5 [) XP型半导体(P指positive,带正电的):由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半导体内部形成带正电的空穴; ) r- |( Y3 x C0 D1 J2 n% D

N型半导体(N指negative,带负电的):由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半导体内部形成带负电的自由电子。

7 _4 B) t2 X+ u$ D" D0 K在 P 型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的 。N 型半导体中有许多可动的负电子和固定的正离子。当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。空穴和电子相遇而复合,载流子消失。因此在界面附近的结区中有一段距离缺少载流子,却有分布在空间的带电的固定离子,称为空间电荷区 。P 型半导体一边的空间电荷是负离子 ,N 型半导体一边的空间电荷是正离子。正负离子在界面附近产生电场,这电场阻止载流子进一步扩散 ,达到平衡。

3 r' q4 v, T" ]0 t在PN结上外加一电压 ,如果P型一边接正极 ,N型一边接负极,电流便从P型一边流向N型一边,空穴和电子都向界面运动,使空间电荷区变窄,电流可以顺利通过。如果N型一边接外加电压的正极,P型一边接负极,则空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过。这就是PN结的单向导电性。 + k4 t' @" ^$ S

PN结加反向电压时 ,空间电荷区变宽 , 区中电场增强。反向电压增大到一定程度时,反向电流将突然增大。如果外电路不能限制电流,则电流会大到将PN结烧毁。反向电流突然增大时的电压称击穿电压。基本的击穿机构有两种,即隧道击穿(也叫齐纳击穿)和雪崩击穿,前者击穿电压小于6V,有负的温度系数,后者击穿电压大于6V,有正的温度系数。 PN结加反向电压时,空间电荷区中的正负电荷构成一个电容性的器件。它的电容量随外加电压改变。 1 n j) E+ V% \, R2 I

根据PN结的材料、掺杂分布、几何结构和偏置条件的不同,利用其基本特性可以制造多种功能的晶体二极管。如利用PN结单向导电性可以制作整流二极管、检波二极管和开关二极管,利用击穿特性制作稳压二极管和雪崩二极管;利用高掺杂PN结隧道效应制作隧道二极管;利用结电容随外电压变化效应制作变容二极管。使半导体的光电效应与PN结相结合还可以制作多种光电器件。如利用前向偏置异质结的载流子注入与复合可以制造半导体激光二极管与半导体发光二极管;利用光辐射对PN结反向电流的调制作用可以制成光电探测器;利用光生伏特效应可制成太阳电池。此外,利用两个

/ L* K' F8 P; r: K9 v2 JPN结之间的相互作用可以产生放大,振荡等多种电子功能 。PN结是构成双极型晶体管和场效应晶体管的核心,是现代电子技术的基础。在二级管中广泛应用。 0 b M+ e0 P, o( M

PN结的平衡态,是指PN结内的温度均匀、稳定,没有外加电场、外加磁场、光照和辐射等外界因素的作用,宏观上达到稳定的平衡状态. PN结的形成 2 X( W1 a: ]9 B5 k

在一块本征半导体的两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。此时将在N型半导体和P型半导体的结合面上形成如下物理过程:

' s2 c. W3 c1 C% n, K因浓度差 ! @* T% l0 b8 V6 e; z# c

: k; b) {; W! G, J5 ^9 t7 K多子的扩散运动®由杂质离子形成空间电荷区 f" ^9 g5 K4 ?/ Q0 [

! Z$ E3 K8 a; O" n; [8 h5 W空间电荷区形成形成内电场 8 M" Y4 Z2 _# j4 R* s

↓ ↓

) h+ V# S2 n0 C* L内电场促使少子漂移 内电场阻止多子扩散

. |7 J$ M5 [+ c+ E' ~. j1 T最后,多子的扩散和少子的漂移达到动态平衡。在P型半导体和N型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为PN结。PN结的内电场方向由N区指向P区。在空间电荷区,由于缺少多子,所以也称耗尽层。PN结形成的过程可参阅图01.06。 % n3 ^( L, I. y5 h4 W0 m0 O

图01.06 PN结的形成过程(动画1-3)如打不开点这儿(压缩后的) PN结的单向导电性

. _" I. \ ]/ J) {7 m8 D) HPN结具有单向导电性,若外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。

/ I! A, ^% Z' n, M( H$ z( b如果外加电压使: ) r, H7 |; ?! W4 C$ F

PN结P区的电位高于N区的电位称为加正向电压,简称正偏;

4 b/ q/ J p6 y. z% C; A) g% g6 hPN结P区的电位低于N区的电位称为加反向电压,简称反偏。 * x b2 O9 ?. v* O

(1) PN结加正向电压时的导电情况 ; c: q1 r# B- L( p f/ N3 f# p

外加的正向电压有一部分降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。

?: j# F* y$ [8 G" K(2) PN结加反向电压时的导电情况

G- t8 m' O+ ]外加的反向电压有一部分降落在PN结区,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。

8 f5 l0 w c, J. N1 {9 @) _在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,这个电流也称为反向饱和电流。 ! p. G/ ^8 y7 \' {

PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。由此可以得出结论:PN结具有单向导电性。 PN结的电容效应 1 w* T1 y- \! u. U8 Q- A

PN结具有一定的电容效应,它由两方面的因素决定。一是势垒电容CB ,二是扩散电容CD 。 8 c' K- H( V+ A9 D/ s3 \( y

(1) 势垒电容CB 1 {+ E t2 f G3 X

势垒电容是由空间电荷区的离子薄层形成的。当外加电压使PN结上压降发生变化时,离子薄层的厚度也相应地随之改变,这相当PN结中存储的电荷量也随之变化,犹如电容的充放电。势垒电容的示意图见图01.09。

) }- M9 K2 G, n- c! {图01.09 势垒电容示意图 ; F6 b5 d4 C, A1 ^0 L/ m3 V A" C7 I

(2) 扩散电容CD

7 J) Z+ Z( c6 _$ G4 {; r扩散电容是由多子扩散后,在PN结的另一侧面积累而形成的。因PN结正偏时,由N区扩散到P区的电子,与外电源提供的空穴相复合,形成正向电流。刚扩散过来的电子就堆积在 P 区内紧靠PN结的附近,形成一定的多子浓度梯度分布曲线。反之,由P区扩散到N区的空穴,在N区内也形成类似的浓度梯度分布曲线。扩散电容的示意图如图01.10所示。

; S2 U0 I) W1 G( V3 k$ ?5 J; P当外加正向电压不同时,扩散电流即外电路电流的大小也就不同。所以PN结两侧堆积的多子的浓度梯度分布也不同,这就相当电容的充放电过程。势垒电容和扩散电容均是非线性电容。

$ m4 h; Z+ {" l4 U/ c) E6 e O8 fPN结的击穿特性:当反向电压增大到一定值时,PN结的反向电流将随反向电压的增加而急剧增 加,这种现象称为PN结的击穿,反向电流急剧增加时所对应的电压称为反向击穿电压,如上图所示, PN结的反向击穿有雪崩击穿和齐纳击穿两种。 1、雪崩击穿阻挡层中的载流子漂移速度随内部电场的增强而相应加快到一定程度时,其动能足以把束缚在共价键中的价电子碰撞出来,产生自由电 子—空穴对新产生的载流子在强电场作用下,再去碰撞其它中性原子,又产生新的自由电子—空穴对,如此连锁反应,使阻挡层中的载流子数量急 ! ^% D3 L8 i; ^- F' i* Y4 k0 Q

剧增加,象雪崩一样。雪崩击穿发生在掺杂浓度较低的PN结中,阻挡层宽,碰撞电离的机会较多,雪崩击穿的击穿电压高。 2、齐纳击穿当PN结两边掺杂浓度很高时,阻挡层很薄,不易产生碰撞电离,但当加不大的反向电压时,阻挡层中的电场很强,足以把中性原子中的价电子直接从共价键中拉出来,产生新的自由电子—空穴对,这个过程 称为场致激发。

5 P" u0 h3 b: m+ U [一般击穿电压在6V以下是齐纳击穿,在6V以上是雪崩击穿。 3、击穿电压的温度特性温度升高后,晶格振动加剧,致使载流子运动的平 均自由路程缩短,碰撞前动能减小,必须加大反向电压才能发生雪崩击穿具有正的温度系数,但温度升高,共价键中的价电子能量状态高,从而齐纳击穿电压随温度升高而降低,具有负的温度系数。6V左右两种击穿将会同时发生,击穿电压的温度系数趋于零。 4、稳压二极管PN结一旦击穿后,尽管反向电流急剧变化,但其端电压几 乎不变(近似为V(BR),只要限制它的反向电流,PN结 就不会烧坏,利用这一特性可制成稳压二极管,其电路符号及伏 $ m" z1 S8 E4 ~( m6 {2 k: P

安特性如上图所示:其主要参数有: VZ 、 Izmin 、 Iz 、 Izmax

2 | F' V# e, \4 @

% G% f D/ I+ M0 ]+ l+ ?5 P8 ~ f6 Q6 ~( c0 ?7 D4 |

PN结的电容特性:PN结除具有非线性电阻特性外,还具有非线性电容特性,主要有势垒电容和扩散电容。 1、势垒电容势垒区类似平板电容器,其交界两侧存储着数值相等极性相反的离子电荷,电荷量随外加电压而变化,称为势垒电容,用CT表示。 ' K: v9 V( s2 M( J; @

CT = - dQ/dV 6 d0 C' y3 B7 X7 O

PN结有突变结和缓变结,现考虑突变结情况(缓变结参见《晶体管原 理》),PN结相当于平板电容器,虽然外加电场会使势垒区变宽或变窄 但这个变化比较小可以忽略,

, c6 ]7 ]# e* t- F* c则CT=εS/L,已知动态平衡下阻挡层的宽度L0,代入上式可得:

3 b8 J9 I; \) e6 }/ N# m- k

h J) N# a l$ Y9 P' _4 P0 R3 A5 m6 \" T T

CT不是恒值,而是随V而变化,利用该特性可制作变容二极管。 2、 扩散电容多子在扩散过程中越过PN结成为另一方的少子, 当PN结处于 平衡状态(无外加电压)时的少子称为平衡少子 可以认为阻挡层以外的区域内平衡少子浓度各处是一样的,当PN结处于正向偏置时,N区的多子自由电子扩散到P区成为 P区的非平衡少子,由于浓度差异还会向P 区深处扩散,距交界面越远,非平衡少子浓度越低,其分布曲线见[PN 结的伏 安特性]。当外加正向电压增大时,浓度分布曲线上移,两边 非平 衡少子浓度增加即电荷量增加,为了维持电中性,中性区内的非平衡多子浓度也相应增加,这就是说,当外加电压增加时,P区和N区各自存储的空穴和自由电子电荷量也增加,这种效应相当于在PN结上并联一个电容,由于它是载流子扩散引起的,故称之为扩散电容CD,由半导体物理推导得 CD=( I + Is)τp/VT 推导过程参见《晶体管原理》。

1 @5 ]. j. ~4 H" ?' K当外加反向电压时 I = Is , CD趋于零。 3、 PN结电容PN结的总电容Cj为CT和CD两者之和Cj = CT+CD ,外加正向电 压CD很大, Cj以扩散电容为主(几十pF到几千pF) ,外加反向电压CD趋于零,Cj以势垒电容为主(几pF到几十pF到)。 4、变容二极管PN结反偏时,反向电流很小,近似开路,因此是一个主要由势垒电容构成的较理想的电容器件,且其增量电容值随外加电压而变化 利用该特性可制作变容二极管,变容二极管在非线性电路中应用较广泛, 如压控振荡器、频率调制

太阳能伴热带工作电压是多少?220V吗?还是12V?

太阳能伴热带工作电压是220V。

太阳能伴热带,太阳能热水器专用系列电热带,均匀挤包在两根平行金属导线上,通过辐照交联,具有在寒冷环境中升温迅速,起动电流小。

品名: 太阳能专用带,型号:DBR-a 10,功率W/m·10℃:15,最高维持温度℃:25,最高承受温度℃:65±5,最低安装温度℃:105 -15,最大使用长度m:20。

品名:太阳能专用带型号,  DBR-A 10,功率W/m·10℃ :15,最高维持温度℃:25,最高承受温度℃: 65±5,最低安装温度℃ :105 -20 ,最大使用长度m30。

品名:太阳能专用带, 型号: DBR-B 10,功率W/m·10℃ :15,最高维持温度℃:25,最高承受温度℃ 65±5 ,最低安装温度℃ :105 -30 ,最大使用长度m30。

品名:太阳能专用带,型号: DBR-C 10,功率W/m·10℃ :15,最高维持温度℃:25,最高承受温度℃ 65±5 ,最低安装温度℃ :105 -30, 最大使用长度m30。

品名 :太阳能专用带,型号 DBR-D 10,功率W/m·10℃ :15,最高维持温度℃:25,最高承受温度℃ 65±5 ,最低安装温度℃: 105 -40, 最大使用长度m:30。

扩展资料:

220V是在我们国家工矿企业最常用光伏太阳能自动复合开关的标准电压,也是我们家庭常用光伏太阳能自动复合开关的所谓交流电压。

是我国居民最常用的标准电压的有效值(我们常用的各种家用用电器上所标注的电压值220V即为有效值)。

我国交流电频率为50Hz ,欧美国家 60Hz,非洲国家40Hz。

参考资料来源:百度百科-太阳能伴热带

发表评论

评论列表

  • 萌懂长野(2022-06-13 15:16:07)回复取消回复

    到N区的空穴,在N区内也形成类似的浓度梯度分布曲线。扩散电容的示意图如图01.10所示。 ; S2 U0 I) W1 G( V3 k$ ?5 J; P当外加正向电压不同时,扩散电流即外电路电流的大小也就不同。所以PN结两侧堆积的多子的浓度梯度分布也不同,这就相当电容的充放电过程。势垒电容

  • 语酌风晓(2022-06-13 16:16:54)回复取消回复

    灯常亮。4、传感器灵敏度调节:如果遇到水质太纯净或传感器长时间使用结水垢出现灵敏度降低,检测不到最高水位时,可以将接线盒内传感器的灵敏度跳线开关从低跳到高的位置(出厂时传感器的灵敏度设在低

  • 绿邪只影(2022-06-13 23:15:24)回复取消回复

    时容量和安时容量由预定的连续无日照时间决定。 1.2 控制器 控制器的主要功能是使太阳能发电系统始终处于发电的最大功率点附近,以获得最高效率。而充电控制通常采用脉冲宽度调制技术即PWM控制方式,使整个系统始终运行于最大功率点Pm附近区域。放电控制主要是指当电池缺电、系统故障,如电池开路或接

  • 泪灼软祣(2022-06-13 14:32:18)回复取消回复

    电、节能、环保、增值融于一房,成功地把光电技术与建筑技术结合起来,称为太阳能建筑系统(SPBS),SPBS已于2000年9月20日通过专家论证。近日在上海浦东建成了国内首座太阳能--照明一体化的公厕,所

  • 末屿薄喜(2022-06-13 16:02:37)回复取消回复

    应加快到一定程度时,其动能足以把束缚在共价键中的价电子碰撞出来,产生自由电 子—空穴对新产生的载流子在强电场作用下,再去碰撞其它中性原子,又产生新的自由电子—空穴对,如此连锁反应,使阻挡层中的载流子数量急 ! ^% D3