体育资讯网

您现在的位置是:首页 > 分类13 > 正文

分类13

binder驱动源码(binder源码分析)

hacker2022-06-11 10:19:15分类1346
本文目录一览:1、安卓代码里添加驱动设备的应用层函数怎么写

本文目录一览:

安卓代码里添加驱动设备的应用层函数怎么写

说到 android 驱动是离不开 Linux 驱动的。Android 内核采用的是 Linux2.6 内核 (最近Linux 3.3 已经包含了一些 Android 代码)。但 Android 并没有完全照搬 Linux 系统内核binder驱动源码,除了对Linux 进行部分修正binder驱动源码,还增加了不少内容。android 驱动 主要分两种类型:Android 专用驱动 和 Android 使用的设备驱动(linux)。Android 专有驱动程序:1)Android Ashmem 匿名共享内存; 为用户空间程序提供分配内存的机制binder驱动源码,为进程间提供大块共享内存binder驱动源码,同时为内核提供回收和管理这个内存。2)Android Logger 轻量级的LOG(日志) 驱动;3)Android Binder 基于 OpenBinder 框架的一个驱动;4)Android Power Management 电源管理模块;5)Low Memory Killer 低内存管理器;6)Android PMEM 物理内存驱动;7)USB Gadget USB 驱动(基于 gaeget 框架);8)Ram Console 用于调试写入日志信息的设备;9)Time Device 定时控制设备; 10)Android Alarm 硬件时钟;Android 上的设备驱动:1)Framebuff 显示驱动;2)Event 输入设备驱动;3)ALSA 音频驱动;4)OSS 音频驱动;5)v412摄像头:视频驱动;6)MTD 驱动;7)蓝牙驱动;8)WLAN 设备驱动; Android 专有驱动程序1.Android Ashmem为用户空间程序提供分配内存的机制binder驱动源码,为进程间提供大块共享内存,同时为内核提供回收和管理这个内存。设备节点:/dev/ashmen .主设备号 10.源码位置: include/linux/ashmen.h Kernel /mm/ashmen.c相比于 malloc 和 anonymous/named mmap 等传统的内存分配机制,其优势是通过内核驱动提供了辅助内核的内存回收算法机制(pin/unoin)2.Android Logger 无论是底层的源代码还上层的应用,我们都可以使用 logger 这个日志设备看、来进行调试。设备节点: /dev/log/main /dev/log/event /dev/log/radio源码位置:include/linux/logger.h include/linux/logger.c3.Android Binder IPC Binder 一种进程间通信机制。他的进程能够为其它进程提供服务 ----- 通过标准的 Linux 系统调用 API。设备节点 :/dev/binder源码位置:Kernel/include/linux/binder.h Kernel/drivers/misc/binder.c4.Android Power Management 一个基于标准 linux 电源管理的轻量级 Android 电源管理系统,在 drivers/android/power.c kernel/power/5.Low Memory Killer它在用户空间中指定了一组内存临界值,当其中某个值与进程描述中的 oom_adj 值在同一范围时,该进程将被Kill掉(在parameters/adj中指定oome_adj 的最小值)。它与标准的Linux OOM机制类似,只是实现方法不同源码位置:drivers/misc/lowmemorykiller.c 6.Android PMEM PMEM 主要作用就是向用户空间提供连续的物理内存区域。1.让 GPU 或 VPU 缓冲区共享 CPU 核心。2.用于 Android service 堆。源码位置:include/linux/android_pmem.h drivers/android/pmem.c 7.USB Gadget 基于标准 Linux USB gaeget 驱动框架的设备驱动。源码位置:drivers/usb/gadet/8.Ram Console 为了提供调试功能,android 允许将调试日志信息写入这个设备,它是基于 RAM 的 buffer.源码位置: drivers/staging/android/ram_console.c9.Time Device 定时控制,提供了对设备进行定时控制的功能。源码位置:drivers/staging/android/timed_output.c(timed_gpio.c)10.Android Alarm 提供一个定时器,用于把设备从睡眠状态唤醒,同时它还提供了一个即使在设备睡眠时也会运行的时钟基准。设备节点:/dev/alarm源码位置:drivers/trc/alarm.c Android 设备驱动 1. Framebuffer 帧缓存设备Framebuffer 驱动在 Linux 中是标准的显示设备的驱动。对于 PC 系统,它是显卡的驱动 ; 对于嵌入式 SOC 处理器系统,它是 LCD 控制器或者其他显示控制器的驱动。它是一个字符设备,在文件系统中设备节点通常是 /dev/fbx 。 每个系统可以有多个显示设备 , 依次用 /dev/fbO 、 /dev/fb l 等来表示。在 Android 系统中主设备号为 29 ,次设备号递增生成。Android 对 Framebuffer 驱动的使用方式是标准的 , 在 / dev / graphie / 中的 Framebuffer 设备节点由 init 进程自动创建 , 被 libui 库调用 。 Android 的 GUI 系统中 , 通过调用 Framebuffer 驱动的标准接口,实现显示设备的抽象。 Framebuff的结构框架和实现 :linux LCD驱动(二)--FrameBuffer Linux LCD驱动(四)--驱动的实现 2.Event输入设备驱动Input 驱动程序是 Linux 输入设备的驱动程序 , 分为游戏杆 (joystick) 、 鼠标 (mouse 和 mice)和事件设备 (Event queue)3 种驱动程序。其中事件驱动程序是目前通用的程序,可支持键盘 、 鼠标、触摸屏等多种输入设备。 Input 驱动程序的主设备号是 l3 ,每一种 Input 设备从设备号占 用5 位 , 3 种从设备号分配是 : 游戏杆 0 ~ 61 ; Mouse 鼠标 33 ~ 62 ; Mice 鼠标 63 ; 事件设备 64 ~ 95 ,各个具体的设备在 misc 、 touchscreen 、 keyboard 等目录中。Event 设备在用户空问使用 read 、 ioctl 、 poll 等文件系统的接口操作, read 用于读取输入信息, ioctl 用于获取和设置信息, poll 用于用户空间的阻塞,当内核有按键等中断时,通过在中断中唤醒内核的 poll 实现。 Event 输入驱动的架构和实现:Linux设备驱动之——input子系统 3.ALSA音频驱动高级 Linux 声音体系 ALSA(Advanced Linux Sound Architecture ) 是为音频系统提供驱动 的Linux 内核组件,以替代原先的开发声音系统 OSS 。它是一个完全开放源代码的音频驱动程序集 ,除了像 OSS 那样提供一组内核驱动程序模块之外 , ALSA 还专门为简化应用程序的编写提供相应的函数库,与 OSS 提供的基于 ioctl 等原始编程接口相比, ALSA 函数库使用起来要更加方便一些利用该函数库,开发人员可以方便、快捷地开发出自己的应用程序,细节则留给函数库进行内部处理 。 所以虽然 ALSA 也提供了类似于 OSS 的系统接口 , 但建议应用程序开发者使用音频函数库,而不是直接调用驱动函数。 ALSA 驱动的主设备号为 116 ,次设备号由各个设备单独定义,主要的设备节点如下:/ dev / snd / contmlCX —— 主控制 ;/ dev / snd / pcmXXXc —— PCM 数据通道 ;/ dev / snd / seq —— 顺序器;/ dev / snd / timer —— 定义器。在用户空问中 , ALSA 驱动通常配合 ALsA 库使用 , 库通过 ioctl 等接口调用 ALSA 驱动程序的设备节点。对于 AIJSA 驱动的调用,调用的是用户空间的 ALsA 库的接口,而不是直接调用 ALSA 驱动程序。ALSA 驱动程序的主要头文件是 include / sound ./ sound . h ,驱动核心数据结构和具体驱动的注册函数是 include / sound / core . h ,驱动程序 的核心实现是 Sound / core / sound . c 文件。 ALSA 驱动程序使用下面的函数注册控制和设备:int snd _ pcm _ new (struct snd _ card * card , char * id , int device , int playback _ count , int capture _ count , struct snd _ pcm ** rpcm) ;int snd ctl _ add(struct snd _ card * card , struct snd _ kcontrol * kcontro1) ;ALSA 音频驱动在内核进行 menuconfig 配置时 , 配置选项为 “ Device Drivers ” “ Sound c ard support ” 一 “ Advanced Linux Sound Architecture ” 。子选项包含了 Generic sound devices( 通用声音设备 ) 、 ARM 体系结构支持,以及兼容 OSS 的几个选项。 ALsA 音频驱动配置对应的文件是sound / core / Kconfig 。 Android 没有直接使用 ALSA 驱动,可以基于 A-LSA 驱动和 ALSA 库实现 Android Audio 的硬件抽象层; ALSA 库调用内核的 ALSA 驱动, Audio 的硬件抽象层调用 ALSA 库。4.OSS音频驱动OSS(Open Sound System开放声音系统)是 linux 上最早出现的声卡驱动。OSS 由一套完整的内核驱动程序模块组成,可以为绝大多数声卡提供统一的编程接口。OSS 是字符设备,主设备号14,主要包括下面几种设备文件:1) /dev/sndstat它是声卡驱动程序提供的简单接口,它通常是一个只读文件,作用也只限于汇报声卡的当前状态。(用于检测声卡)2)/dev/dsp用于数字采样和数字录音的设备文件。对于音频编程很重要。实现模拟信号和数字信号的转换。3)/dev/audio类似于/dev/dsp,使用的是 mu-law 编码方式。4)/dev/mixer用于多个信号组合或者叠加在一起,对于不同的声卡来说,其混音器的作用可能各不相同。5)/dev/sequencer这个设备用来对声卡内建的波表合成器进行操作,或者对 MIDI 总线上的乐器进行控制。OSS 驱动所涉及的文件主要包括:kernel/include/linux/soundcard.hkernel/include/linux/sound.h 定义 OSS 驱动的次设备号和注册函数kernel/sound_core.c OSS核心实现部分5.V4l2视频驱动V4L2是V4L的升级版本,为linux下视频设备程序提供了一套接口规范。包括一套数据结构和底层V4L2驱动接口。V4L2提供了很多访问接口,你可以根据具体需要选择操作方法。需要注意的是,很少有驱动完全实现了所有的接口功能。所以在使用时需要参考驱动源码,或仔细阅读驱动提供者的使用说明。V4L2的主设备号是81,次设备号:0~255,这些次设备号里也有好几种设备(视频设备、Radio设备、Teletext、VBI)。V4L2的设备节点: /dev/videoX, /dev/vbiX and /dev/radioX Android 设备驱动(下)MTD 驱动Flash 驱动通常使用 MTD (memory technology device ),内存技术设备。MTD 的字符设备:/dev/mtdX主设备号 90.MTD 的块设备:/dev/block/mtdblockX主设备号 13.MTD 驱动源码drivers/mtd/mtdcore.c:MTD核心,定义MTD原始设备drivers/mtd/mtdchar.c:MTD字符设备drivers/mtd/mtdblock.c:MTD块设备MTD 驱动程序是 Linux 下专门为嵌入式环境开发的新一类驱动程序。Linux 下的 MTD 驱动程序接口被划分为用户模块和硬件模块:用户模块 提供从用户空间直接使用的接口:原始字符访问、原始块访问、FTL (Flash Transition Layer)和JFS(Journaled File System)。硬件模块 提供内存设备的物理访问,但不直接使用它们,二十通过上述的用户模块来访问。这些模块提供了闪存上读、写和擦除等操作的实现。蓝牙驱动 在 Linux 中,蓝牙设备驱动是网络设备,使用网络接口。Android 的蓝牙协议栈使用BlueZ实现来对GAP, SDP以及RFCOMM等应用规范的支持,并获得了SIG认证。由于Bluez使用GPL授权, 所以Android 框架通过D-BUS IPC来与bluez的用户空间代码交互以避免使用未经授权的代码。 蓝牙协议部分头文件:include/net/bluetooth/hci_core.hinclude/net/bluetooth/bluetooth.h蓝牙协议源代码文件:net/bluetooth/*蓝牙驱动程序部分的文件:drivers/bluetooth/*蓝牙的驱动程序一般都通过标准的HCI控制实现。但根据硬件接口和初始化流程的不同,又存在一些差别。这类初始化动作一般是一些晶振频率,波特率等基础设置。比如CSR的芯片一般通过BCSP协议完成最初的初始化配置,再激活标准HCI控制流程。对Linux来说,一旦bluez可以使用HCI与芯片建立起通信(一般是hciattach + hciconfig),便可以利用其上的标准协议(SCO, L2CAP等),与蓝牙通信,使其正常工作了。WLAN 设备驱动(Wi-Fi)(比较复杂我面会专门写个wifi分析)在linux中,Wlan设备属于网络设备,采用网络接口。Wlan在用户空间采用标准的socket接口进行控制。WiFi协议部分头文件:include/net/wireless.hWiFi协议部分源文件:net/wireless/*WiFi驱动程序部分:drivers/net/wireless/*

篇文章会先对照binder机制与linux的通信机制的区别,了解为什么android会另起炉灶

1)从性能的角度

数据拷贝次数binder驱动源码:Binder数据拷贝只需要一次,而管道、消息队列、Socket都需要2次,但共享内存方式一次内存拷贝都不需要;从性能角度看,Binder性能仅次于共享内存。

(2)从稳定性的角度

Binder是基于C/S架构的,简单解释下C/S架构,是指客户端(Client)和服务端(Server)组成的架构,Client端有什么需求,直接发送给Server端去完成,架构清晰明朗,Server端与Client端相对独立,稳定性较好;而共享内存实现方式复杂,没有客户与服务端之别, 需要充分考虑到访问临界资源的并发同步问题,否则可能会出现死锁等问题;从这稳定性角度看,Binder架构优越于共享内存。

仅仅从以上两点,各有优劣,还不足以支撑google去采用binder的IPC机制,那么更重要的原因是:

(3)从安全的角度

传统Linux IPC的接收方无法获得对方进程可靠的UID/PID,从而无法鉴别对方身份;而Android作为一个开放的开源体系,拥有非常多的开发平台,App来源甚广,因此手机的安全显得额外重要;对于普通用户,绝不希望从App商店下载偷窥隐射数据、后台造成手机耗电等等问题,传统Linux IPC无任何保护措施,完全由上层协议来确保。

Android为每个安装好的应用程序分配了自己的UID,故进程的UID是鉴别进程身份的重要标志,前面提到C/S架构,Android系统中对外只暴露Client端,Client端将任务发送给Server端,Server端会根据权限控制策略,判断UID/PID是否满足访问权限,目前权限控制很多时候是通过弹出权限询问对话框,让用户选择是否运行。Android 6.0,也称为Android M,在6.0之前的系统是在App第一次安装时,会将整个App所涉及的所有权限一次询问,只要留意看会发现很多App根本用不上通信录和短信,但在这一次性权限权限时会包含进去,让用户拒绝不得,因为拒绝后App无法正常使用,而一旦授权后,应用便可以胡作非为。

针对这个问题,google在Android M做了调整,不再是安装时一并询问所有权限,而是在App运行过程中,需要哪个权限再弹框询问用户是否给相应的权限,对权限做了更细地控制,让用户有了更多的可控性,但同时也带来了另一个用户诟病的地方,那也就是权限询问的弹框的次数大幅度增多。对于Android M平台上,有些App开发者可能会写出让手机异常频繁弹框的App,企图直到用户授权为止,这对用户来说是不能忍的,用户最后吐槽的可不光是App,还有Android系统以及手机厂商,有些用户可能就跳果粉了,这还需要广大Android开发者以及手机厂商共同努力,共同打造安全与体验俱佳的Android手机。

Android中权限控制策略有SELinux等多方面手段,下面列举从Binder的一个角度的权限控制:

Android源码的Binder权限是如何控制binder驱动源码? -Gityuan的回答

传统IPC只能由用户在数据包里填入UID/PID;另外,可靠的身份标记只有由IPC机制本身在内核中添加。其次传统IPC访问接入点是开放的,无法建立私有通道。从安全角度,Binder的安全性更高。

说到这,可能有人要反驳,Android就算用了Binder架构,而现如今Android手机的各种流氓软件,不就是干着这种偷窥隐射,后台偷偷跑流量的事吗binder驱动源码?没错,确实存在,但这不能说Binder的安全性不好,因为Android系统仍然是掌握主控权,可以控制这类App的流氓行为,只是对于该采用何种策略来控制,在这方面android的确存在很多有待进步的空间,这也是google以及各大手机厂商一直努力改善的地方之一。在Android 6.0,google对于app的权限问题作为较多的努力,大大收紧的应用权限;另外,在Google举办的Android Bootcamp 2016大会中,google也表示在Android 7.0 (也叫Android N)的权限隐私方面会进一步加强加固,比如SELinux,Memory safe language(还在research中)等等,在今年的5月18日至5月20日,google将推出Android N。

(4)从语言层面的角度

大家多知道Linux是基于C语言(面向过程的语言),而Android是基于Java语言(面向对象的语句),而对于Binder恰恰也符合面向对象的思想,将进程间通信转化为通过对某个Binder对象的引用调用该对象的方法,而其独特之处在于Binder对象是一个可以跨进程引用的对象,它的实体位于一个进程中,而它的引用却遍布于系统的各个进程之中。可以从一个进程传给其它进程,让大家都能访问同一Server,就像将一个对象或引用赋值给另一个引用一样。Binder模糊了进程边界,淡化了进程间通信过程,整个系统仿佛运行于同一个面向对象的程序之中。从语言层面,Binder更适合基于面向对象语言的Android系统,对于Linux系统可能会有点“水土不服”。

另外,Binder是为Android这类系统而生,而并非Linux社区没有想到Binder IPC机制的存在,对于Linux社区的广大开发人员,我还是表示深深佩服,让世界有了如此精湛而美妙的开源系统。也并非Linux现有的IPC机制不够好,相反地,经过这么多优秀工程师的不断打磨,依然非常优秀,每种Linux的IPC机制都有存在的价值,同时在Android系统中也依然采用了大量Linux现有的IPC机制,根据每类IPC的原理特性,因时制宜,不同场景特性往往会采用其下最适宜的。比如在Android OS中的Zygote进程的IPC采用的是Socket(套接字)机制,Android中的Kill Process采用的signal(信号)机制等等。而Binder更多则用在system_server进程与上层App层的IPC交互。

(5) 从公司战略的角度

总所周知,Linux内核是开源的系统,所开放源代码许可协议GPL保护,该协议具有“病毒式感染”的能力,怎么理解这句话呢?受GPL保护的Linux Kernel是运行在内核空间,对于上层的任何类库、服务、应用等运行在用户空间,一旦进行SysCall(系统调用),调用到底层Kernel,那么也必须遵循GPL协议。

而Android 之父 Andy Rubin对于GPL显然是不能接受的,为此,Google巧妙地将GPL协议控制在内核空间,将用户空间的协议采用Apache-2.0协议(允许基于Android的开发商不向社区反馈源码),同时在GPL协议与Apache-2.0之间的Lib库中采用BSD证授权方法,有效隔断了GPL的传染性,仍有较大争议,但至少目前缓解Android,让GPL止步于内核空间,这是Google在GPL Linux下 开源与商业化共存的一个成功典范。

Android Binder是什么?binder属于一个驱动

Android中使用Binder进行进程间通讯。ViewBinder应该是一个Binder类,上次应用调用到这个类,这个类再调用底层相应的库。

发表评论

评论列表

  • 森槿瘾然(2022-06-11 11:35:33)回复取消回复

    层函数怎么写说到 android 驱动是离不开 Linux 驱动的。Android 内核采用的是 Linux2.6 内核 (最近Linux 3.3 已经包含了一些 Android 代码)。但 Android 并没有完全照搬 Linux 系统内核bi

  • 鸢旧卿忬(2022-06-11 14:20:30)回复取消回复

    架构的,简单解释下C/S架构,是指客户端(Client)和服务端(Server)组成的架构,Client端有什么需求,直接发送给Server端去完成,架构清晰明朗,Server端与Client端相对独立,稳定性较好;而共享内存实现方式复杂,没有客户与服务端之

  • 辙弃旧竹(2022-06-11 19:09:41)回复取消回复

    ndroid中权限控制策略有SELinux等多方面手段,下面列举从Binder的一个角度的权限控制:Android源码的Binder权限是如何控制binder驱动源码? -Gityuan的回答传统IPC只能由用户在数据包里填入UID/PID;另外

  • 断渊猫卆(2022-06-11 18:28:34)回复取消回复

    IPC机制,根据每类IPC的原理特性,因时制宜,不同场景特性往往会采用其下最适宜的。比如在Android OS中的Zygote进程的IPC采用的是Socket(套接字)机制

  • 柔侣桃靥(2022-06-11 20:24:02)回复取消回复

    设备(视频设备、Radio设备、Teletext、VBI)。V4L2的设备节点: /dev/videoX, /dev/vbiX and /dev/radioX Android 设备驱动(下)M